IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics0360544223029614.html
   My bibliography  Save this article

Experimental study on evolution and mechanism for dielectric response of different rank coals in terahertz band

Author

Listed:
  • Qu, Baolin
  • Wang, Jingxin
  • Zhu, Hongqing
  • Hu, Lintao
  • Liao, Qi

Abstract

Terahertz technology holds the potential for applications in identifying risks and development stages of coal spontaneous combustion (CSC). However, one critical factor influencing the precision of THz technology in CSC applications is the coal rank. In light of these, this study aimed to investigate the permittivity (0.4–1.6 THz) of different rank coals. Additionally, its underlying mechanism was analyzed utilizing Fourier-transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. Results indicate that increased coal rank leads to a decrease in both real permittivity (from 2.462 to 2.327) and imaginary permittivity (from 0.0447 to 0.0250), primarily due to diminished moisture (from 12.82 % to 1.35 %). After moisture removal, increased coal rank results in an increased real permittivity (from 2.292 to 2.315), primarily due to the carbon crystallite (interlayer spacing changed from 3.553 to 3.529, and stacking height shifted from 14.805 to 19.743) and microstructure profiles. Moreover, minerals are identified as another primary factor affecting real permittivity. For imaginary permittivity, increased coal rank leads to a decrease (from 0.0411 to 0.0245), primarily due to oxygen-containing functional groups (from 42.96 % to 31.71 %). The conclusion advances the fundamental theoretical research on coal permittivity, providing a solid theoretical foundation for THz technology in CSC applications.

Suggested Citation

  • Qu, Baolin & Wang, Jingxin & Zhu, Hongqing & Hu, Lintao & Liao, Qi, 2024. "Experimental study on evolution and mechanism for dielectric response of different rank coals in terahertz band," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223029614
    DOI: 10.1016/j.energy.2023.129567
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223029614
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129567?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223029614. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.