IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics0360544223029511.html
   My bibliography  Save this article

Design and performance analysis of deep peak shaving scheme for thermal power units based on high-temperature molten salt heat storage system

Author

Listed:
  • Ma, Tingshan
  • Li, Zhengkuan
  • Lv, Kai
  • Chang, Dongfeng
  • Hu, Wenshuai
  • Zou, Ying

Abstract

The transition to renewable energy production is imperative for achieving the low-carbon goal. However, the current lack of peak shaving capacity and poor flexibility of coal-fired units hinders the large-scale consumption of renewable energy. This study takes a 670 MW coal-fired unit as the research object and proposes eight design schemes for molten salt heat storage auxiliary peak shaving system. And through simulation calculations using Ebsilon software, the thermal performance, peak shaving capacity, environmental performance, and investment cost of each scheme were compared and analyzed. The results show that the molten salt heat storage auxiliary peak shaving system improves the flexibility of coal-fired units and can effectively regulate unit output; The combination of high-temperature molten salt and low-temperature molten salt heat storage effectively overcomes the problem of limited working temperature of a single type of molten salt, and can further improve the peak shaving capacity of coal-fired units, and the overall efficiency of operation is not low; Choosing LiNaK carbonates as high parameter molten salt and Hitec as low parameter molten salt has greatly expanded the operating range of the unit; Upgrading the combined molten salt solution with the existing low pressure cylinder zero output pipeline of the power plant can further improve the thermal performance, peak shaving performance, and environmental performance of the thermal power molten salt coupling system, with a peak shaving depth of up to 90.2 %; Combined with the zero output technology of low-pressure cylinder, when heat storage, the intermediate pressure cylinder exhaust steam extraction and electric heater heating molten salt. When releasing heat, use combined molten salt to heat bypass water supply. During heat release, a combination of molten salt is used to heat the bypass water supply. This scheme is the best flexible peak shaving transformation plan for the unit studied in this article, which can recover the initial investment within five years and meet the requirements of technical transformation difficulty.

Suggested Citation

  • Ma, Tingshan & Li, Zhengkuan & Lv, Kai & Chang, Dongfeng & Hu, Wenshuai & Zou, Ying, 2024. "Design and performance analysis of deep peak shaving scheme for thermal power units based on high-temperature molten salt heat storage system," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223029511
    DOI: 10.1016/j.energy.2023.129557
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223029511
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129557?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223029511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.