IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics0360544223024714.html
   My bibliography  Save this article

A hybrid RSM-GA-PSO approach on optimization of process intensification of linseed biodiesel synthesis using an ultrasonic reactor: Enhancing biodiesel properties and engine characteristics with ternary fuel blends

Author

Listed:
  • Ahmad, Aqueel
  • Yadav, Ashok Kumar
  • Singh, Achhaibar
  • Singh, Dinesh Kumar
  • Ağbulut, Ümit

Abstract

The depletion of fossil fuels necessitates the development of sustainable and energy-efficient techniques for biodiesel production. In recent years, cavitation reactors have emerged as a viable alternative to conventional biodiesel synthesis methods due to their superior conversion rates and shorter processing times. These reactors possess a high surface-to-volume ratio and facilitate efficient heat and mass transfer. This study aims to optimize the production of biodiesel from linseed oil using a novel ultrasonic cavitation reactor through a hybrid approach. In order to achieve this, an L50 orthogonal array with five factors and three levels was developed using a Box-Behnken design based on response surface methodology (RSM). These factors included the molar ratio (4:1, 6:1, and 8:1), ultrasonic power (100, 125, and 150 W), temperature (25, 35, and 45 °C), time (3, 6, and 9 min), and ultrasonic frequency (25, 30, and 35 kHz). The parameters were optimized using RSM-based desirability, genetic algorithm (GA), and particle swarm optimization (PSO) approaches. The results indicated that the RSM-based optimization approach outperformed the other methods. The optimal combination of parameters obtained through RSM consisted of molar ratio of 6.58:1, ultrasonic power of 133.65 W, temperature of 37.44 °C, time of 7.71 min, and pulse frequency of 26.29 kHz. This combination resulted in a biodiesel yield of 95.25%. Furthermore, this study explored the impact of different linseed oil methyl ester, octanol, and diesel blends (B10, B20, B30, B10 (O-10), and B20 (O-10)) on engine performance and emission characteristics. The B20 (O-10) blend exhibited significant potential for simultaneously reducing emissions and enhancing engine performance. When used as engine fuel, the B20 (O-10) blend increased brake thermal efficiency (BTE) by 0.848%, decreased brake specific fuel consumption (BSFC) by 0.607%, and decreased CO, HC, and NOx emissions by 18.75%, 6.55%, and 0.72%, respectively, compared to pure diesel at rated power.

Suggested Citation

  • Ahmad, Aqueel & Yadav, Ashok Kumar & Singh, Achhaibar & Singh, Dinesh Kumar & Ağbulut, Ümit, 2024. "A hybrid RSM-GA-PSO approach on optimization of process intensification of linseed biodiesel synthesis using an ultrasonic reactor: Enhancing biodiesel properties and engine characteristics with terna," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223024714
    DOI: 10.1016/j.energy.2023.129077
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223024714
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223024714. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.