IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v287y2024ics0360544223030608.html
   My bibliography  Save this article

Effects of structural parameters of double-layer electrode on co-electrolysis in a solid oxide electrolysis cell

Author

Listed:
  • Li, Yongwei
  • Fu, Zaiguo
  • Li, Jingfa
  • Shao, Yan
  • Zhu, Qunzhi
  • Yuan, Binxia

Abstract

The advantages of double-layer electrode are available in the literature about single electrolysis of H2O and CO2 using solid oxide electrolysis cell (SOEC). However, for the co-electrolysis of CO2 and H2O, the influence of the structural parameters of the double-layer electrode on the co-electrolysis performance has been still unclear. In this study, a multi-scale model describing the co-electrolysis process of CO2 and H2O in SOEC is adopted. After model validation, a comparison of the performance of SOEC between a single-layer cathode and a double-layer cathode is conducted with different inlet flow rates. Moreover, parametric analyses are performed to investigate the effects of the thickness and porosity of cathode diffusion layer (CDL) and the internal composition of cathode function layer (CFL). The results show that when the CDL porosity increases from 0.45 to 0.65, the conversion ratio of H2 and CO increase by 10.17 % and 10.24 %, respectively. The optimal thickness of CDL (200 μm) for enhancing the durability of the cell and the preferable internal composition of CFL for improving the co-electrolysis performance are found within the scope of this study. This numerical analysis can provide guidance for the design of the double-layer cathode and the optimization of the co-electrolysis performance.

Suggested Citation

  • Li, Yongwei & Fu, Zaiguo & Li, Jingfa & Shao, Yan & Zhu, Qunzhi & Yuan, Binxia, 2024. "Effects of structural parameters of double-layer electrode on co-electrolysis in a solid oxide electrolysis cell," Energy, Elsevier, vol. 287(C).
  • Handle: RePEc:eee:energy:v:287:y:2024:i:c:s0360544223030608
    DOI: 10.1016/j.energy.2023.129666
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223030608
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129666?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:287:y:2024:i:c:s0360544223030608. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.