IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v287y2024ics0360544223023897.html
   My bibliography  Save this article

WindFix: Harnessing the power of self-supervised learning for versatile imputation of offshore wind speed time series

Author

Listed:
  • Chen, Yaoran
  • Cai, Candong
  • Cao, Leilei
  • Zhang, Dan
  • Kuang, Limin
  • Peng, Yan
  • Pu, Huayan
  • Wu, Chuhan
  • Zhou, Dai
  • Cao, Yong

Abstract

The accurate prediction of offshore wind speed is crucial for effective wind energy management. Deep learning models, which utilize large-scale wind speed time series, have emerged as a prominent approach for this task. However, the availability of wind history and other oceanic data is often capriciously incomplete, with intermittent gaps in the time series due to transmission difficulties or measurement device malfunctions. This presents a significant challenge for both data preparation and model training. In this paper, a self-supervised framework, WindFix, is proposed for continuous missing-value imputation of offshore wind time series using meteorological features from both the self-spot and neighboring spots. This cutting-edge innovation integrates multiple masking techniques with enhanced transformer models, resulting in a highly efficient and versatile process that adapts seamlessly to various scenarios. The numerical results validated on wind dataset from Pacific Ocean show that the model can serve for different missing types with a mean squared error around 0.002 for the simplest case. The comprehensive analysis also provided in-depth explanations on the different patterns observed in various imputation types, attributing these to the allocation of attention weights on features.

Suggested Citation

  • Chen, Yaoran & Cai, Candong & Cao, Leilei & Zhang, Dan & Kuang, Limin & Peng, Yan & Pu, Huayan & Wu, Chuhan & Zhou, Dai & Cao, Yong, 2024. "WindFix: Harnessing the power of self-supervised learning for versatile imputation of offshore wind speed time series," Energy, Elsevier, vol. 287(C).
  • Handle: RePEc:eee:energy:v:287:y:2024:i:c:s0360544223023897
    DOI: 10.1016/j.energy.2023.128995
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223023897
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128995?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:287:y:2024:i:c:s0360544223023897. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.