IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v286y2024ics0360544223028918.html
   My bibliography  Save this article

A series electric hybrid wheel loader powertrain with independent electric load-sensing system

Author

Listed:
  • Lin, Zichang
  • Lin, Zhenchuan
  • Wang, Feng
  • Xu, Bing

Abstract

Electric hybrid powertrain is a promising way for wheel loader electrification. However, the widely used centralized load-sensing working hydraulic system has low efficiency with imbalance load. A novel electric hydraulic system configuration making good use of the electric drive is needed. An independent electric load-sensing hydraulic system for series hybrid wheel loaders is proposed in this study. The lift/tilt functions are powered by speed-controlled fixed displacement pump and controlled by proportional control valves. The independent electric load-sensing hydraulic system eliminates the system inherent power losses of the multi-actuator hydraulic system and combines the high efficiency of variable speed fixed displacement pump and high dynamic performance of valve control. Simulation study on energy efficiency comparison among the proposed powertrain, the existing hybrid powertrain and the non-hybrid powertrain is carried out to check its potential on fuel saving. Results show that the independent electric load-sensing system improves the working hydraulic system efficiency from 34.0% to 54.9% compared to the centralized load-sensing system. The proposed hybrid powertrain saves 11.8% of the fuel consumption compared to the existing hybrid solution, and 41.9% lower than non-hybrid powertrain.

Suggested Citation

  • Lin, Zichang & Lin, Zhenchuan & Wang, Feng & Xu, Bing, 2024. "A series electric hybrid wheel loader powertrain with independent electric load-sensing system," Energy, Elsevier, vol. 286(C).
  • Handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223028918
    DOI: 10.1016/j.energy.2023.129497
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223028918
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129497?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223028918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.