IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v286y2024ics0360544223028554.html
   My bibliography  Save this article

Review of methods to account for the solar spectral influence on photovoltaic device performance

Author

Listed:
  • Daxini, Rajiv
  • Wu, Yupeng

Abstract

The accuracy of photovoltaic (PV) performance forecasts is essential for improving grid penetration, fault detection, and financing of new installations. Failing to account for the spectral influence on PV performance can lead to weekly errors of up to 14% even for relatively stable technologies such as polycrystalline silicon. There exist a range models, known as spectral correction functions (SCFs), to account for the spectral influence on PV performance forecasts. These SCFs use different methods to characterise both the shift in PV performance due to the spectrum, and the solar spectrum itself. This review analyses the merits and limitations of seven commonly used spectral characterisation indices — five proxy variables (air mass, clearness index, precipitable water, aerosol, diffuse solar radiation ratio) and two variables extracted from the spectral distribution (average photon energy, depth of a water absorption band). The same analytical approach is adopted to review a further four indices (mismatch factor and its variants, (weighted) useful fraction, normalised short-circuit current) that are commonly used to characterise the variation in PV performance due to the solar spectrum. A review of ten SCFs that are based on these indices is undertaken to analyse the current state of the art of spectral correction modelling. The results of the review show that whereas some proxy-variable methods offer a simple and convenient way to account for the spectral influence in PV performance forecasts, they are surpassed in terms of accuracy by SCFs based on parameters derived directly from the spectrum, such as the average photon energy and the depth of spectral absorption bands. A decision-making framework is proposed to guide PV performance modellers in their choice of spectral correction model. The framework considers system specifications, climate, data availability, etc. The results of this work may be applied in, for example, software packages for PV performance forecasting to enable more accurate case-specific power forecasts. In future work, a standardised comparison of all SCFs and their respective indices is necessary to quantify the differences between a wider range of models than is currently available in the literature and substantiate the proposed framework.

Suggested Citation

  • Daxini, Rajiv & Wu, Yupeng, 2024. "Review of methods to account for the solar spectral influence on photovoltaic device performance," Energy, Elsevier, vol. 286(C).
  • Handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223028554
    DOI: 10.1016/j.energy.2023.129461
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223028554
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129461?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223028554. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.