IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v286y2024ics0360544223028402.html
   My bibliography  Save this article

Large-scale integration of renewable energies by 2050 through demand prediction with ANFIS, Ecuador case study

Author

Listed:
  • Arévalo, Paul
  • Cano, Antonio
  • Jurado, Francisco

Abstract

The growing reliance on hydroelectric power and the risk of future droughts pose significant challenges for power systems, especially in developing countries. To address these challenges, comprehensive long-term energy planning is essential. This paper proposes an optimized electrical system for 2050, using Ecuador as a case study. For forecasting electricity demand, a Neuro-Fuzzy Adaptive Inference System is employed, utilizing real historical data. Subsequently, the EnergyPlan software constructs a long-term energy consumption model, exploring three scenarios based on Ecuador's energy potential. The first scenario represents a 'business as usual’ approach, mirroring the current trend in the Ecuadorian electricity system. In contrast to the second scenario, it encompasses a broader range of renewable sources, including offshore wind, pumped storage, biomass, and geothermal energy. The third scenario extends the second one by incorporating demand response systems, such as vehicle-to-grid and hydrogen-to-grid technologies. In terms of novelty, this study highlights the innovative use of the Neuro-Fuzzy Adaptive Inference System for demand forecasting, along with a comprehensive exploration of multiple scenarios to optimize the electrical system. Research findings indicate that the integration of these new renewable energy sources not only reduces electricity import costs but also ensures surplus electricity production. Consequently, it is anticipated that the 2050 electricity system will reduce its dependence on hydroelectric energy while adopting photovoltaic and wind energy with penetration rates of 65 %, 11.2 %, and 9 %, respectively. This transition will be facilitated by a pumped storage system with a 28 % penetration rate and enhanced connectivity with neighboring countries, enabling the seamless integration of electric and hydrogen vehicles.

Suggested Citation

  • Arévalo, Paul & Cano, Antonio & Jurado, Francisco, 2024. "Large-scale integration of renewable energies by 2050 through demand prediction with ANFIS, Ecuador case study," Energy, Elsevier, vol. 286(C).
  • Handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223028402
    DOI: 10.1016/j.energy.2023.129446
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223028402
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129446?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223028402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.