IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v285y2023ics0360544223027950.html
   My bibliography  Save this article

State of health prediction of lithium-ion batteries based on bidirectional gated recurrent unit and transformer

Author

Listed:
  • Jia, Chenyu
  • Tian, Yukai
  • Shi, Yuanhao
  • Jia, Jianfang
  • Wen, Jie
  • Zeng, Jianchao

Abstract

Lithium-ion batteries have been widely used in various aspects of our lives, playing a crucial role in numerous applications. The state of health (SOH) serves as a pivotal indicator, and accurate prediction of SOH is essential for the safe utilization, management, and maintenance of lithium-ion batteries. In order to accurately predict SOH, a hybrid prediction model by combining bidirectional gated recurrent unit (BiGRU) and Transformer with multi-head attention mechanism (AM) is proposed, which can effectively address the challenge of long time series prediction. In the proposed prediction model, the indirect health indicator (HI), which can characterize the degradation of lithium-ion batteries, is fed into the BiGRU to learn the hidden states of the input features and thus further extract time series features. On this basis, multiple attention is given to the Transformer encoder layer and the input feature vectors, which gives it a better performance in the long-term dependence of the time series. The study based on the lithium-ion battery data from NASA Prediction Center of Excellence (PCoE) shows that the proposed BiGRU-Transformer model has higher accuracy, better robustness and generalisation capability.

Suggested Citation

  • Jia, Chenyu & Tian, Yukai & Shi, Yuanhao & Jia, Jianfang & Wen, Jie & Zeng, Jianchao, 2023. "State of health prediction of lithium-ion batteries based on bidirectional gated recurrent unit and transformer," Energy, Elsevier, vol. 285(C).
  • Handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223027950
    DOI: 10.1016/j.energy.2023.129401
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223027950
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129401?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223027950. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.