IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v285y2023ics0360544223027810.html
   My bibliography  Save this article

Considering the dual endogenous-exogenous uncertainty integrated energy multiple load short-term forecast

Author

Listed:
  • Wang, Yongli
  • Wang, Huan
  • Meng, Xiao
  • Dong, Huanran
  • Chen, Xin
  • Xiang, Hao
  • Xing, Juntai

Abstract

More accurate multivariate load forecasting is conducive to integrated energy system planning optimization and economic operation. In this paper, based on the consideration of exogenous factors such as weather, endogenous factors are added into the prediction, and a short-term prediction model for integrated energy multivariate load based on endo-exogenous uncertainty is established using fine-tuned transfer learning. The LSTM pre-training model is first initially established using genetic algorithm and exogenous factors such as weather. Then the exogenous uncertainty of the pre-training model and the knowledge of endogenous uncertainty in the target model are combined using fine-tuned transfer learning to continuously optimize the basic parameters of the prediction model to obtain the final multivariate load prediction model. The performance of the four models is comprehensively evaluated after the historical load validation of the integrated energy system in Beijing, China. Compared with the traditional LSTM multivariate load forecasting model, the MAPE of the proposed model in this paper is reduced by 21.03 %, 13.00 %, and 24.39 % for electricity, heat, and cooling load forecasting, respectively.

Suggested Citation

  • Wang, Yongli & Wang, Huan & Meng, Xiao & Dong, Huanran & Chen, Xin & Xiang, Hao & Xing, Juntai, 2023. "Considering the dual endogenous-exogenous uncertainty integrated energy multiple load short-term forecast," Energy, Elsevier, vol. 285(C).
  • Handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223027810
    DOI: 10.1016/j.energy.2023.129387
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223027810
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129387?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223027810. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.