IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v284y2023ics0360544223019953.html
   My bibliography  Save this article

Stress and permeability evolution of high-gassy coal seams for repeated mining

Author

Listed:
  • Xu, Chao
  • Ma, Sibo
  • Wang, Kai
  • Yang, Gang
  • Zhou, Xin
  • Zhou, Aitao
  • Shu, Longyong

Abstract

Coal bed methane reservoirs in China are generally characterized by high stress and low gas permeability coefficient. Protected layer mining has the effect of unloading pressure and increasing gas permeability coefficient. There are few studies in the case of repeated mining with an orthogonal arrangement of the protected layer. Based on the engineering practice of the high gas coal seams group in Xinjing coal mine, a combination of numerical simulation and field test was used. The distribution law of plastic zone, stress-strain and gas permeability coefficient of the protected layer under the two states of single mining and repeated mining were obtained. The stress and gas permeability coefficient distribution of the protected layer was divided into 5 and 6 zones in plane for single and repeated mining cases. The field test tested the distribution law of stress, gas pressure, deformation, and gas permeability coefficient, and verified the reliability of the numerical simulation results. According to the characteristics of gas permeability coefficient distribution under the condition of repeated mining, a method for accurate gas extraction is proposed. The results of the study have important implications for the design of gas extraction schemes in orthogonal repeated mining situations.

Suggested Citation

  • Xu, Chao & Ma, Sibo & Wang, Kai & Yang, Gang & Zhou, Xin & Zhou, Aitao & Shu, Longyong, 2023. "Stress and permeability evolution of high-gassy coal seams for repeated mining," Energy, Elsevier, vol. 284(C).
  • Handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223019953
    DOI: 10.1016/j.energy.2023.128601
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223019953
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128601?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Haixiang & Li, Xiaochun & Fang, Zhiming & Wei, Ning & Li, Qianshu, 2010. "Small-molecule gas sorption and diffusion in coal: Molecular simulation," Energy, Elsevier, vol. 35(7), pages 2939-2944.
    2. Zhou, Lijun & Zhou, Xihua & Fan, Chaojun & Bai, Gang, 2022. "Coal permeability evolution triggered by variable injection parameters during gas mixture enhanced methane recovery," Energy, Elsevier, vol. 252(C).
    3. Feng Cui & Tinghui Zhang & Xingping Lai & Jiantao Cao & Pengfei Shan, 2019. "Study on the Evolution Law of Overburden Breaking Angle under Repeated Mining and the Application of Roof Pressure Relief," Energies, MDPI, vol. 12(23), pages 1-20, November.
    4. Chao Xu & Yuanping Cheng & Ting Ren & Liang Wang & Shengli Kong & Shouqing Lu, 2014. "Gas ejection accident analysis in bed splitting under igneous sills and the associated control technologies: a case study in the Yangliu Mine, Huaibei Coalfield, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 109-134, March.
    5. Chao Xu & Haoshi Sun & Kai Wang & Liangliang Qin & Chaofei Guo & Zhijie Wen, 2021. "Effect of low‐level roadway tunneling on gas drainage for underlying coal seam mining: Numerical analysis and field application," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(4), pages 780-794, August.
    6. Liu, Ting & Lin, Baiquan & Fu, Xuehai & Gao, Yabin & Kong, Jia & Zhao, Yang & Song, Haoran, 2020. "Experimental study on gas diffusion dynamics in fractured coal: A better understanding of gas migration in in-situ coal seam," Energy, Elsevier, vol. 195(C).
    7. Fan, Tie-gang & Zhang, Guang-qing, 2014. "Laboratory investigation of hydraulic fracture networks in formations with continuous orthogonal fractures," Energy, Elsevier, vol. 74(C), pages 164-173.
    8. Haifeng Wang & Yuanping Cheng & Liang Yuan, 2013. "Gas outburst disasters and the mining technology of key protective seam in coal seam group in the Huainan coalfield," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 763-782, June.
    9. Yan, Min & Zhou, Ming & Li, Shugang & Lin, Haifei & Zhang, Kunyin & Zhang, Binbin & Shu, Chi-Min, 2021. "Numerical investigation on the influence of micropore structure characteristics on gas seepage in coal with lattice Boltzmann method," Energy, Elsevier, vol. 230(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Haiping & Wang, Eric, 2020. "A laboratory investigation of the impact of solvent treatment on the permeability of bituminous coal from Western Canada with a focus on microbial in-situ processing of coals," Energy, Elsevier, vol. 210(C).
    2. Fangtian Wang & Cun Zhang & Ningning Liang, 2017. "Gas Permeability Evolution Mechanism and Comprehensive Gas Drainage Technology for Thin Coal Seam Mining," Energies, MDPI, vol. 10(9), pages 1-18, September.
    3. Song, Haoran & Zhong, Zheng & Lin, Baiquan, 2023. "Impact of methane gas diffusion in coal on elastic modulus and porosity: Modeling and analysis," Energy, Elsevier, vol. 271(C).
    4. Sheng-Jie Fang & Bing Liang & Wei-Ji Sun & Zhan-Shan Shi & Jian-Feng Hao & Bei-Fang Wang & Xiao-Yong Zhang, 2022. "Study on Stress Evolution Law of Overburden under Repeated Mining in Long-Distance Double Upper Protective Layer," Energies, MDPI, vol. 15(12), pages 1-24, June.
    5. Zhouhua Wang & Yun Li & Huang Liu & Fanhua Zeng & Ping Guo & Wei Jiang, 2017. "Study on the Adsorption, Diffusion and Permeation Selectivity of Shale Gas in Organics," Energies, MDPI, vol. 10(1), pages 1-15, January.
    6. Chen, Junqing & Jiang, Fujie & Cong, Qi & Pang, Xiongqi & Ma, Kuiyou & Shi, Kanyuan & Pang, Bo & Chen, Dongxia & Pang, Hong & Yang, Xiaobin & Wang, Yuying & Li, Bingyao, 2023. "Adsorption characteristics of shale gas in organic–inorganic slit pores," Energy, Elsevier, vol. 278(C).
    7. Pang, Mingkun & Zhang, Tianjun & Ji, Xiang & Wu, Jinyu & Song, Shuang, 2022. "Measurement of the coefficient of seepage characteristics in pore-crushed coal bodies around gas extraction boreholes," Energy, Elsevier, vol. 254(PA).
    8. Zhao, Jingyu & Wang, Tao & Deng, Jun & Shu, Chi-Min & Zeng, Qiang & Guo, Tao & Zhang, Yuxuan, 2020. "Microcharacteristic analysis of CH4 emissions under different conditions during coal spontaneous combustion with high-temperature oxidation and in situ FTIR," Energy, Elsevier, vol. 209(C).
    9. Zuxun Zhang & Hongtu Wang & Bozhi Deng & Minghui Li & Dongming Zhang, 2018. "Field Investigation of Hydraulic Fracturing in Coal Seams and Its Enhancement for Methane Extraction in the Southeast Sichuan Basin, China," Energies, MDPI, vol. 11(12), pages 1-15, December.
    10. Kai Wang & Yangyang Guo & Feng Du & Huzi Dong & Chao Xu, 2022. "Effect of the water injection pressure on coal permeability based on the pore‐fracture fractal characteristics: An experimental study," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 12(1), pages 136-147, February.
    11. José Luis Míguez & Jacobo Porteiro & Raquel Pérez-Orozco & Miguel Ángel Gómez, 2018. "Technology Evolution in Membrane-Based CCS," Energies, MDPI, vol. 11(11), pages 1-18, November.
    12. Li, Zhongbei & Ren, Ting & Li, Xiangchun & Cheng, Yuanping & He, Xueqiu & Lin, Jia & Qiao, Ming & Yang, Xiaohan, 2023. "Full-scale pore structure characterization of different rank coals and its impact on gas adsorption capacity: A theoretical model and experimental study," Energy, Elsevier, vol. 277(C).
    13. Yang, Xue & Chen, Zeqin & Liu, Xiaoqiang & Xue, Zhiyu & Yue, Fen & Wen, Junjie & Li, Meijun & Xue, Ying, 2022. "Correction of gas adsorption capacity in quartz nanoslit and its application in recovering shale gas resources by CO2 injection: A molecular simulation," Energy, Elsevier, vol. 240(C).
    14. Rui Gao & Bin Yu & Hongchun Xia & Hongfei Duan, 2017. "Reduction of Stress Acting on a Thick, Deep Coal Seam by Protective-Seam Mining," Energies, MDPI, vol. 10(8), pages 1-15, August.
    15. Liu, Huang & Yao, Desong & Yang, Bowen & Li, Huashi & Guo, Ping & Du, Jianfen & Wang, Jian & Yang, Shuokong & Wen, Lianhui, 2022. "Experimental investigation on the mechanism of low permeability natural gas extraction accompanied by carbon dioxide sequestration," Energy, Elsevier, vol. 253(C).
    16. Yuxiang Cheng & Yanjun Zhang, 2020. "Experimental Study of Fracture Propagation: The Application in Energy Mining," Energies, MDPI, vol. 13(6), pages 1-31, March.
    17. Wang, Ziwei & Qin, Yong & Shen, Jian & Li, Teng & Zhang, Xiaoyang & Cai, Ying, 2022. "A novel permeability prediction model for coal based on dynamic transformation of pores in multiple scales," Energy, Elsevier, vol. 257(C).
    18. Guo, Yong & Yang, Fuqiang, 2023. "Mining safety research in China: Understanding safety research trends and future demands for sustainable mining industry," Resources Policy, Elsevier, vol. 83(C).
    19. Yongzan, Wen & Guanhua, Ni & Xinyue, Zhang & Yicheng, Zheng & Gang, Wang & Zhenyang, Wang & Qiming, Huang, 2023. "Fine characterization of pore structure of acidified anthracite based on liquid intrusion method and Micro-CT," Energy, Elsevier, vol. 263(PA).
    20. Golsanami, Naser & Jayasuriya, Madusanka N. & Yan, Weichao & Fernando, Shanilka G. & Liu, Xuefeng & Cui, Likai & Zhang, Xuepeng & Yasin, Qamar & Dong, Huaimin & Dong, Xu, 2022. "Characterizing clay textures and their impact on the reservoir using deep learning and Lattice-Boltzmann simulation applied to SEM images," Energy, Elsevier, vol. 240(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223019953. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.