IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223024234.html
   My bibliography  Save this article

Retrofit heat exchanger network optimization via graph-theoretical approach: Pinch-bounded N-best solutions allows positional swapping

Author

Listed:
  • Teng, Sin Yong
  • Orosz, Ákos
  • How, Bing Shen
  • Jansen, Jeroen J.
  • Friedler, Ferenc

Abstract

Retrofit heat exchanger network (HEN) optimization is a fundamentally unique problem which requires the consideration of existing structures, compared to grassroots design problems. The optimization of retrofit HENs is particularly difficult due to the integration of both existing and newly acquired equipment. The re-routing of existing equipment can lead to various network topologies, increasing the complexity of considerations. In this work, we exploit the P-graph framework to solve retrofit HEN problems, guaranteeing to find the topology of optimal solutions within the constrained space of the HEN retrofit problem. The P-graph framework has additional advantages that allows topologically-efficient search space, simplifies additional unit placement, considers unit positional swapping (re-sequencing and re-piping within search constraints), considers stream splitting, and n-best solution visualization. The pinch minimum utility constraint also provides a bound for the maximum number of modifications in the HEN, significantly reducing search space. The proposed P-graph-based approach is demonstrated using a real refinery case study to show its capability in obtaining the topology of the optimal HEN, highlighting the economic and energy benefits. Further extensions to other retrofit process integration problems (e.g. retrofit water network, hydrogen network etc.) will be enabled via the proposed P-graph approach.

Suggested Citation

  • Teng, Sin Yong & Orosz, Ákos & How, Bing Shen & Jansen, Jeroen J. & Friedler, Ferenc, 2023. "Retrofit heat exchanger network optimization via graph-theoretical approach: Pinch-bounded N-best solutions allows positional swapping," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024234
    DOI: 10.1016/j.energy.2023.129029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223024234
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.