IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223024210.html
   My bibliography  Save this article

Hybrid cooling and heating absorption heat pump cycle with thermal energy storage

Author

Listed:
  • Jeong, Jaehui
  • Jung, Han Sol
  • Lee, Jae Won
  • Kang, Yong Tae

Abstract

This study presents a hybrid cooling/heating absorption heat pump with thermal energy storage. This system consists of low- and high-pressure absorber/evaporator pairs, using H2O/LiBr as the working fluid, and it is driven by low-temperature heat source of 80 °C to supply cooling and heating effects simultaneously. Using solution and refrigerant reservoirs, the system can store thermal energy in the form of chemical potential owing to the concentration glide. Applying the building cooling/heating temperature conditions, the operating concentration range of the system is constrained to 0.49–0.59 LiBr mass fraction. In this range, a system performance analysis is conducted through simulation modeling. The maximum total COP of the hybrid heat pump cycle reaches 0.80, which is same as the maximum COP of the single-effect absorption chiller with the same operating conditions. In storage mode, the maximum total COP is reduced to 0.30 due to the lack of internal heat recovery, while a maximum energy storage density (ESD) of 402.4 kJ/kg is achieved. In particular, the performance of the storage mode is dominantly affected by the solution circulation ratio, indicating the design criteria for the proposed system.

Suggested Citation

  • Jeong, Jaehui & Jung, Han Sol & Lee, Jae Won & Kang, Yong Tae, 2023. "Hybrid cooling and heating absorption heat pump cycle with thermal energy storage," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024210
    DOI: 10.1016/j.energy.2023.129027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223024210
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.