IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223024118.html
   My bibliography  Save this article

Investigation into the key factors influencing the establishment and propagation of combustion front in ultra-deep high-temperature heavy oil reservoirs

Author

Listed:
  • Zhao, Shuai
  • Pu, Wanfen
  • Jiang, Qi
  • Yuan, Chengdong
  • Varfolomeev, Mikhail A.
  • Sudakov, Vladislav

Abstract

The in-situ combustion technique is currently on the exploratory stage for ultra-deep high-temperature heavy oil reservoirs. In this work, the oxidation experiments of heavy oil were conducted using thermogravimetry, high-pressure differential scanning calorimetry, and combustion tube. Based on these experimental results, a reaction kinetics model was developed, which was then integrated into the Computer Modeling Group (CMG) STARS reservoir simulation software by adjusting stoichiometric numbers, kinetic parameters, and reaction enthalpy to match the experimental data obtained. Furthermore, a corrected reservoir simulation approach was employed, combining the variance analysis and a Pareto chart, to identify the key factors influencing the establishment and propagation of combustion front in the absence of electrical ignition. The results indicate that a reservoir temperature of 148 °C leads to the establishment of combustion front approximately 7 m away from the injection well, with a delay time of around 25.21 days. The Pareto chart reveals that reservoir temperature and water saturation are the primary controlling factors for combustion occurrence. Specifically, a reservoir temperature above 148 °C and water saturation below 60% increase the likelihood of combustion front formation. Among the examined factors, the reservoir temperature has the most significant effect on combustion front propagation. Once the reservoir temperature reaches 208 °C, a stable combustion front is formed, and the average temperature of combustion front remains around 400 °C throughout 8 years of model operation. When the water saturation was 50%, a consistently stable combustion front can be established within the first 6 years of model operation. However, beyond the 6th year, the average front temperature decreases below 400 °C. Therefore, it is recommended to introduce a certain amount of oxidation catalysts into the oil reservoirs after 6 years of air injection to enhance the combustion reactions. Increasing the air injection rate or pre-exponential factor does not have a significant effect on the average front temperature after 8 years of model operation, which remains below 350 °C. This study can provide significant references for future assessments and decision-making processes related to the application of ISC in ultra-deep high-temperature heavy oil reservoirs.

Suggested Citation

  • Zhao, Shuai & Pu, Wanfen & Jiang, Qi & Yuan, Chengdong & Varfolomeev, Mikhail A. & Sudakov, Vladislav, 2023. "Investigation into the key factors influencing the establishment and propagation of combustion front in ultra-deep high-temperature heavy oil reservoirs," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024118
    DOI: 10.1016/j.energy.2023.129017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223024118
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.