IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223023903.html
   My bibliography  Save this article

Proposal and analysis of a novel CCHP system based on SOFC for coalbed methane recovery

Author

Listed:
  • Liu, Zhiqiang
  • Tao, Tianfeng
  • Deng, Chengwei
  • Yang, Sheng

Abstract

To utilize the waste heat from coalbed methane, this study presents a novel solid oxide fuel cell (SOFC) system combined with a transcritical carbon dioxide cycle, lithium bromide absorption refrigeration cycle, ammonia vapor compression refrigeration cycle, and water heating cycle to provide power, cooling, and heating. An Aspen Plus model is developed to perform thermodynamic and exergy analyses, assessing system performance. The results indicate that critical parameters such as current density and operating temperature of the SOFC have a significant influence on the overall system. Increasing current density and air preheating temperature enhance thermal efficiency while raising the SOFC operating temperature reduces it. For the specified coalbed methane flow, the system achieves electrical efficiency, thermal efficiency, and exergy efficiency of 52.46%, 86.30%, and 75.58%, respectively. Additionally, the cooling capacity, power generation, and heat production are obtained as 1567.72 kW, 4879.1 kW, and 2476.43 kW, respectively. The SOFC system has the largest exergy destruction, accounting for 48.8% of the total exergy destruction, but the overall exergy efficiency remains at around 75%. The results illustrate that the proposed integrated system provides a high level of efficiency and reliability, thereby offering a new avenue for the efficient and rational utilization of CBM.

Suggested Citation

  • Liu, Zhiqiang & Tao, Tianfeng & Deng, Chengwei & Yang, Sheng, 2023. "Proposal and analysis of a novel CCHP system based on SOFC for coalbed methane recovery," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223023903
    DOI: 10.1016/j.energy.2023.128996
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223023903
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128996?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223023903. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.