IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223023885.html
   My bibliography  Save this article

Development and assessment of a novel natural gas fuelled HCCI engine based combined power, heating, and refrigeration system

Author

Listed:
  • Siddiqui, Mohd Asjad

Abstract

Internal combustion engines waste a significant amount of energy from the fuel they consume, mostly through the atmospheric release of engine exhaust gases. This phenomenon is well acknowledged as a significant contributor to engine inefficiencies and the production of harmful pollutant emissions. In order to tackle this issue, a bottoming cycle that combines a supercritical CO2 (S–CO2) power cycle with an ejector refrigeration cycle (ERC) is implemented. The goal is to generate power, heating, and cooling utilizing waste heat from a natural gas-powered homogeneous charge compression ignition (HCCI) engine. The study found that the HCCI engine, when not utilizing a bottoming cycle, demonstrated thermal and exergy efficiencies of 48.30% and 40.83%, respectively. However, the incorporation of S–CO2 and ERC cycles resulted in significantly higher system efficiencies of 64.90% and 48.84%, respectively. Furthermore, the proposed system has thermal efficiencies of 53.86% for electrical output, 7.801% for heating output, and 3.239% for cooling output. In addition, the HCCI engine accounts for the most exergy destruction in the system, accounting for 92.83 kW (25.72%), with losses due to in-cylinder heat transfer and system exhaust accounting for 20.63 kW (5.72%) and 12.52 kW (3.47%), respectively.

Suggested Citation

  • Siddiqui, Mohd Asjad, 2023. "Development and assessment of a novel natural gas fuelled HCCI engine based combined power, heating, and refrigeration system," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223023885
    DOI: 10.1016/j.energy.2023.128994
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223023885
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128994?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223023885. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.