IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223023873.html
   My bibliography  Save this article

An economic model predictive control-based flexible power point tracking strategy for photovoltaic power generation

Author

Listed:
  • Liu, Xiangjie
  • Zhu, Zheng
  • Kong, Xiaobing
  • Ma, Lele
  • Lee, Kwang Y.

Abstract

In a high solar-power-penetration power grid, photovoltaic (PV) power generation requires to run in a flexible power point tracking (FPPT) mode. However, traditional hierarchical control-based FPPT strategy ignores the dynamic economic performance of PV power generation. To address this issue, an advanced FPPT strategy based on economic model predictive control (EMPC) is proposed to achieve higher dynamic economic performance. This strategy integrates the PV voltage reference calculation, PV voltage control, and pulse width modulation into one optimal control framework, utilizing the economic indices of the PV power generation system (PVPGS) as the cost function to achieve its economic optimization and power tracking. Due to the strong nonlinearity in the PVPGS, the EMPC optimization problem is non-convex, leading to a local optimum. A mixed integer nonlinear programming algorithm is developed, which utilizes a finite number of converter switching states for obtaining the global optimum. Simulations demonstrate that the EMPC-based FPPT strategy enhances the dynamic economic performance compared to the hierarchical control-based FPPT strategy.

Suggested Citation

  • Liu, Xiangjie & Zhu, Zheng & Kong, Xiaobing & Ma, Lele & Lee, Kwang Y., 2023. "An economic model predictive control-based flexible power point tracking strategy for photovoltaic power generation," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223023873
    DOI: 10.1016/j.energy.2023.128993
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223023873
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128993?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223023873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.