IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223023794.html
   My bibliography  Save this article

A novel mechanism of turbulent kinetic energy harvesting by horizontal-axis wind and hydrokinetic turbines

Author

Listed:
  • Silva, R.N.
  • Nunes, M.M.
  • Mendes, R.C.F.
  • Brasil, A.C.P.
  • Oliveira, T.F.

Abstract

We present a study on the influence of the turbulence generated by a cylinder on the performance of a free horizontal-axis turbine. The analysis focuses on the power coefficient, flow characteristics, and Turbulence Kinetic Energy (TKE) spectral density distribution. The mean velocity, turbulence intensity, and TKE are evaluated in the upstream and downstream planes of the turbine for configurations with and without the upstream cylinder. The results show that the power coefficient exhibits a peak when the rotor rotation frequency coincides with the frequency of vortex shedding from the cylinder, indicating a mechanism of conversion of TKE carried by large-scale structures into mechanical power. It was also observed that the turbine generates downstream turbulence in the absence of the cylinder but reduces the downstream turbulence when the cylinder is present. Spectral analysis of TKE confirms the influence of the frequency of vortex shedding on the velocity recovery of the turbine wake. The main contribution of this paper is the identification of a new mechanism of conversion of the TKE contained in large coherent turbulent structures into mechanical power. This study provides a further understanding of the complex phenomena involved in the interaction between the turbine and the upstream turbulent flow.

Suggested Citation

  • Silva, R.N. & Nunes, M.M. & Mendes, R.C.F. & Brasil, A.C.P. & Oliveira, T.F., 2023. "A novel mechanism of turbulent kinetic energy harvesting by horizontal-axis wind and hydrokinetic turbines," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223023794
    DOI: 10.1016/j.energy.2023.128985
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223023794
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128985?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223023794. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.