IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223021394.html
   My bibliography  Save this article

Study on energy consumption characteristics of passenger electric vehicle according to the regenerative braking stages during real-world driving conditions

Author

Listed:
  • Lee, Gwangryeol
  • Song, Jingeun
  • Han, Jungwon
  • Lim, Yunsung
  • Park, Suhan

Abstract

Electric vehicles are affected by various factors such as the ambient temperature, traffic conditions, driver behavior, vehicle weight, and route characteristics. This study evaluated the energy efficiency of an electric SUV with regenerative braking system under real-world driving conditions. Data were collected using a controller area network while driving on the same route at each regenerative braking stage. Chassis dynamometer tests were performed to verify battery consumption during acceleration and regenerative braking. From the real-world driving test, it was determined that as the regenerative braking stage increased, the battery consumption (excluding regenerative braking) and energy recovered. However, the net battery consumption decreased. In addition, as the speed increased, the energy consumption increased in the order of urban, rural, and motorway sections owing to the air resistance and rolling resistance. Although the energy efficiency tended to increase with the regenerative braking stage, we observed that the real-world driving environment also had an impact. Therefore, in energy efficiency evaluation research, it is essential to analyze the results that reflect the various influencing factors in real-world driving environments and to verify the characteristics of each regenerative braking stage through chassis dynamometer tests.

Suggested Citation

  • Lee, Gwangryeol & Song, Jingeun & Han, Jungwon & Lim, Yunsung & Park, Suhan, 2023. "Study on energy consumption characteristics of passenger electric vehicle according to the regenerative braking stages during real-world driving conditions," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223021394
    DOI: 10.1016/j.energy.2023.128745
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223021394
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128745?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223021394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.