IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223020637.html
   My bibliography  Save this article

Multi-timescale photovoltaic power forecasting using an improved Stacking ensemble algorithm based LSTM-Informer model

Author

Listed:
  • Cao, Yisheng
  • Liu, Gang
  • Luo, Donghua
  • Bavirisetti, Durga Prasad
  • Xiao, Gang

Abstract

As more and more photovoltaic (PV) systems are integrated into the grid, the intelligent operation of the grid system is facing significant challenges. Therefore, accurately forecasting PV power output at various time scales is particularly urgent. To meet this demand, this paper proposes an LSTM-Informer model based on an improved Stacking ensemble algorithm (ISt-LSTM-Informer). The proposed model improves the k-fold cross validation in the traditional Stacking algorithm to a time-series cross validation for integrating time-series forecasting models. Simultaneously, it utilizes long short-term memory (LSTM) and Informer as the base models. By integrating the advantages of the two base models, the ISt-LSTM-Informer achieves accurate short and medium-term PV power forecasting. To validate the effectiveness of the model, a historical dataset from a PV system located in Uluru, Australia, is used for various types of experiments. Among them, comparative experiments validate the superiority of the model. Compared with five other methods, the ISt-LSTM-Informer obtains 21 optimal results for the four evaluation metrics of RMSE, MAE, MAPE, and R2 across eight forecasting time scales. In addition, different combinations of base models are conducted to verify the advantages of the Stacking ensemble algorithm and the two base models, respectively.

Suggested Citation

  • Cao, Yisheng & Liu, Gang & Luo, Donghua & Bavirisetti, Durga Prasad & Xiao, Gang, 2023. "Multi-timescale photovoltaic power forecasting using an improved Stacking ensemble algorithm based LSTM-Informer model," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223020637
    DOI: 10.1016/j.energy.2023.128669
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223020637
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128669?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223020637. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.