IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223020303.html
   My bibliography  Save this article

Performance prediction and optimization of cross-flow indirect evaporative cooler by regression model based on response surface methodology

Author

Listed:
  • Shi, Wenchao
  • Yang, Hongxing
  • Ma, Xiaochen
  • Liu, Xiaohua

Abstract

In recent years, indirect evaporative cooling has rapidly developed with high-accuracy numerical models. As the application of this technology expands from hot-arid areas to hot-humid regions, there is still a lack of regression models of the cross-flow indirect evaporative cooler (IEC) that can be used in different climate regions. Regression models can not only improve prediction efficiency but also be helpful for engineering design. In this study, the regression models of the cross-flow IEC were established based on the response surface methodology (RSM). Eight essential factors, including the inlet air properties, geometric size, and operating parameters, were determined as the input factors, while five indicators were selected as the output responses. The central composite design was employed to generate the matrix for the RSM-based model, and the matrix response data were obtained from an established numerical IEC model validated by the experimental results. The effects of the single and interactive factors are analyzed for each response. Furthermore, the developed models are evaluated by comparing the anticipated results with the on-site measurement data in a real project, and then the multi-objective optimization is conducted for the prediction of IEC performances in five typical cities of China. In summary, the regression models can forecast the cross-flow IEC in a more straightforward approach, which may also assist the design and optimization.

Suggested Citation

  • Shi, Wenchao & Yang, Hongxing & Ma, Xiaochen & Liu, Xiaohua, 2023. "Performance prediction and optimization of cross-flow indirect evaporative cooler by regression model based on response surface methodology," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223020303
    DOI: 10.1016/j.energy.2023.128636
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223020303
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128636?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223020303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.