IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223019047.html
   My bibliography  Save this article

A two-channel deep network based model for improving ultra-short-term prediction of wind power via utilizing multi-source data

Author

Listed:
  • Liu, Hong
  • Yang, Luoxiao
  • Zhang, Bingying
  • Zhang, Zijun

Abstract

Data-driven predictions of wind turbine power outputs have received numerous discussions with using turbine data from the supervisory control and data acquisition (SCADA) system itself. It is of a high curiosity on studying the feasibility of extending the prediction capability with additionally considering data of other sources and the data-driven modeling principle of doing so. To respond such problem and introduce more innovative prediction techniques, this paper presents a pioneering attempt of studying a two-channel deep network modeling method for wind power predictions which leverage both the wind farm data and farm geoinformation. Novelty can be profiled as follows: 1) To accommodate multi-source data in the input, a new high-dimensional input form of two components, a tensor and a graph, is developed; 2) To advance predictions with such input, a deep graph attention convolutional recurrent (GACR) method, which develops one novel deep network channel with stacking multiple graph convolution and long short term memory (GCN-LSTM) layers for engineering high-level latent features from high-dimensional inputs and another classical feature selection channel for directly engaging valuable wind turbine attributes, is proposed. Comprehensive computational experiments are conducted to verify the value of such modeling development by comparing it with a set of competitive benchmarking models. An ablation study is also conducted to explain the necessity and value of network modules in the proposed method. A new state-of-the-art prediction performance is achieved.

Suggested Citation

  • Liu, Hong & Yang, Luoxiao & Zhang, Bingying & Zhang, Zijun, 2023. "A two-channel deep network based model for improving ultra-short-term prediction of wind power via utilizing multi-source data," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223019047
    DOI: 10.1016/j.energy.2023.128510
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223019047
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128510?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223019047. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.