IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223018856.html
   My bibliography  Save this article

Comprehensive analysis and multi-objective optimization of an innovative power generation system using biomass gasification and LNG regasification processes

Author

Listed:
  • Chang, Yue
  • Jia, Yulong
  • Hong, Tan

Abstract

The biomass-based systems have considerable feasibility to design a co-generation with different subsystems. This paper presents a novel biomass-based gas turbine with a modified Kalina cycle, supercritical-CO2 cycle, and LNG regasifying subsystems. A turbine is installed in the LNG regasifying subsystems to produce more power. Energy, advanced exergy, including thermal and mechanical exergies, and economic analyses are applied to assess the system's performance. Three double-objective and two triple-objective optimizations are carried out to obtain the system's operation mode at the optimum state. The results reveal that the combustion chamber and supercritical-CO2 cycle's condenser have the highest exergy destruction. Also, the compressors and turbines have the main portion of the investment cost rate of about 79.91%. The design system provides 7560 kW net power, 41.75% exergy efficiency, and 6.2 years payback period. Regarding the parametric study, the system's performance indexes are mainly affected by the air compressor's pressure ratio. Furthermore, considering the net power-sum unit cost of production as the optimization goal represents the best performance of 7830 kW net power, 42.97% exergy efficiency, and 7.262 $/GJ sum unit cost of products.

Suggested Citation

  • Chang, Yue & Jia, Yulong & Hong, Tan, 2023. "Comprehensive analysis and multi-objective optimization of an innovative power generation system using biomass gasification and LNG regasification processes," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223018856
    DOI: 10.1016/j.energy.2023.128491
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223018856
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128491?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223018856. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.