IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223018728.html
   My bibliography  Save this article

Eco-economic performance and application potential of a novel dual-source heat pump heating system

Author

Listed:
  • Li, Yunhai
  • Cui, Yu
  • Song, Zhiying
  • Zhao, Xudong
  • Li, Jing
  • Shen, Chao

Abstract

Decarbonization of building heating is the key to carbon neutrality. Heat pumps have great potential to replace non-renewable heating devices, thus creating economic and renewable heating systems. To overcome the application challenges of conventional heat pumps (HP), a novel dual-source heat pump (DSHP) heating system and corresponding model are proposed and validated in this paper. Simulated by the validated experiment-based model, the performance of the DSHP heating system is numerically investigated by comparing with different systems in various regions. The results show that the DSHP system has higher seasonal performance factors and near-zero defrosting costs when compared to the conventional HP heating system in different regions, resulting in 1.88%–21.53% reductions in annual heating bills and carbon emissions. Compared to the gas boiler heating system, the DSHP system can achieve 20.64%–54.36% of annual heating bill savings and 14.39%–86.09% of annual carbon reductions in selected regions. The investigation of heating characteristics and eco-economic performance of the DSHP system in different regions provided important guiding significance for the DSHP in global application, and thus contributes to achieving bill-saving and low-carbon heating and sustainable development.

Suggested Citation

  • Li, Yunhai & Cui, Yu & Song, Zhiying & Zhao, Xudong & Li, Jing & Shen, Chao, 2023. "Eco-economic performance and application potential of a novel dual-source heat pump heating system," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223018728
    DOI: 10.1016/j.energy.2023.128478
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223018728
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128478?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223018728. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.