IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223018674.html
   My bibliography  Save this article

Experimental and numerical study on the potential of a new radiative cooling paint boosted by SiO2 microparticles for energy saving

Author

Listed:
  • Jiang, Kaiyu
  • Zhang, Kai
  • Shi, Zijie
  • Li, Haoran
  • Wu, Bingyang
  • Mahian, Omid
  • Zhu, Yutong

Abstract

In this study, we prepared a radiative cooling paint by adding polymethylpentene to acrylic resin mixed with SiO2 microparticles. To improve the cooling performance of the radiative cooling paint, it was optimized based on Mie theory and Monte Carlo simulation to determine the optimal volume fraction of SiO2 microparticles, the mass fraction of polymethylpentene, and the thickness of the radiative cooling paint. Then, the cooling potential of the radiative cooling paint was analyzed in detail based on field experiments. Finally, the improvement of the radiative cooling paint over the existing materials was briefly discussed. The results showed that an emissivity in the atmospheric window of 0.91 and a reflectivity in the solar spectrum of 92% (backed with aluminum foil) can be achieved by the optimized radiative cooling paint. The temperature drops/average cooling powers are 1.5 °C/53.3 W/m2 during the nighttime and 5.2 °C/46.8 W/m2 under an average solar irradiance of 639.3 W/m2 during the daytime for the radiative cooling paint covered with a polyethylene film.

Suggested Citation

  • Jiang, Kaiyu & Zhang, Kai & Shi, Zijie & Li, Haoran & Wu, Bingyang & Mahian, Omid & Zhu, Yutong, 2023. "Experimental and numerical study on the potential of a new radiative cooling paint boosted by SiO2 microparticles for energy saving," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223018674
    DOI: 10.1016/j.energy.2023.128473
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223018674
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128473?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223018674. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.