IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223018376.html
   My bibliography  Save this article

Investigation of the oxy-fuel combustion process in the full-loop circulating fluidized bed

Author

Listed:
  • Chen, Yuyang
  • Yang, Shiliang
  • Hu, Jianhang
  • Wang, Hua

Abstract

Oxy-fuel combustion of fossil fuels in circulating fluidized bed (CFB) reactors has been widely implemented in various industries. However, the knowledge of complex gas thermal characteristics (e.g., gas temperature, viscosity, density, conductivity and specific heat capacity) is still in lack. Understanding the distribution of these gas thermal properties within the oxy-fuel combustion CFB reactor is crucial for predicting particle behavior, optimizing operating conditions, and performing design optimizations. In this study, the hydrodynamics and thermochemical characteristics of dense reactive flow in a 0.1 MWth pilot-scale CFB are simulated via a developed multi-phase particle-in-cell (MP-PIC) reactive model. The impacts of some key operating parameters on the gas thermal properties, gas species distribution and gas-solid flux are studied. The results show that the dynamics and thermochemical variables of gas-solid flow show non-uniform distributions in the riser due to the segregation mechanism and lateral injection of solid fuels. Combustible gases (e.g., CH4, CO, H2, and H2S) mainly concentrate in the left area of the riser. Enlarging the oxygen concentration increases gas viscosity while decreases gas density. The density of gas phase ranges from 0.35 kg/m3 to 0.50 kg/m3 while gas turbulent viscosity ranges from 4.2 × 10−5 m2/s to 4.8 × 10−5 m2/s.

Suggested Citation

  • Chen, Yuyang & Yang, Shiliang & Hu, Jianhang & Wang, Hua, 2023. "Investigation of the oxy-fuel combustion process in the full-loop circulating fluidized bed," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223018376
    DOI: 10.1016/j.energy.2023.128443
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223018376
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128443?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223018376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.