IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223018285.html
   My bibliography  Save this article

A large-scale stochastic simulation-based thermodynamic optimization for the hybrid closed circuit cooling tower system with parallel computing

Author

Listed:
  • Liu, Hua
  • Wu, Zhiyong
  • Zhang, Bingjian
  • Chen, Qinglin
  • Pan, Ming
  • Ren, Jingzheng
  • He, Chang

Abstract

The emerging multi-mode cooling tower can cool down the circulating water by flexibly switching the operating modes according to varying weather conditions. Herein, a computational framework for addressing a large-scale stochastic simulation-optimization task is developed to obtain the optimal thermodynamic performance of the multi-mode cooling system. First, the numerical model is constructed using a well-validated evaporative cooler in the wet and wet-heating modes, as well as an air cooler in the dry mode. A well-suited experimental design is performed for generating an optimal set of samples by approximating the multivariate probability distributions of uncertain data. To reduce the computational burden, a customized parallel computing strategy is presented via parallelization of the task using the message-passing interface. Finally, an example illustrates that the time reduction is up to 93.5%, while the optimal exergy efficiency ratios are expected to be 37.0%, 17.3%, and 22.6% for the wet, dry, and wet-heating modes, respectively.

Suggested Citation

  • Liu, Hua & Wu, Zhiyong & Zhang, Bingjian & Chen, Qinglin & Pan, Ming & Ren, Jingzheng & He, Chang, 2023. "A large-scale stochastic simulation-based thermodynamic optimization for the hybrid closed circuit cooling tower system with parallel computing," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223018285
    DOI: 10.1016/j.energy.2023.128434
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223018285
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128434?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223018285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.