IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v274y2023ics036054422300748x.html
   My bibliography  Save this article

Biomass-based carbon quantum dots for polycrystalline silicon solar cells with enhanced photovoltaic performance

Author

Listed:
  • Wang, Xiaohui
  • Xu, Li
  • Ge, Shengbo
  • Foong, Shin Ying
  • Liew, Rock Keey
  • Fong Chong, William Woei
  • Verma, Meenakshi
  • Naushad, Mu.
  • Park, Young-Kwon
  • Lam, Su Shiung
  • Li, Qian
  • Huang, Runzhou

Abstract

Polycrystalline silicon solar cells modified using biomass resources are promising candidates to accomplish the goal of carbon neutrality. Developing a device with high power conversion efficiency (PCE) is important to resolve the ever-increasing energy shortage issues. Therefore, we develop a facile solution-casting approach to synthesise ethylene-vinyl acetate (EVA) films modified with ultra-high fluorescent carbon quantum dots (CQDs). The films were coated on the surface of polycrystalline silicon solar cells and the PCE increased from 13.19% to 13.65%. The ultra-high fluorescent CQDs were prepared from Ginkgo biloba via a hydrothermal process, and different parts of Ginkgo biloba-based CQDs were investigated in various conditions. The ultra-high fluorescent CQDs obtained at 180 °C, 8 h and a reaction concentration of 0.048 g/mL from Ginkgo wood resulted in high fluorescence of up to 976.74 a.u.. At an excitation wavelength of 365 nm. This work substantially expands the potential of EVA films containing ultra-high fluorescent CQDs for applications in the photovoltaic, environment and energy fields.

Suggested Citation

  • Wang, Xiaohui & Xu, Li & Ge, Shengbo & Foong, Shin Ying & Liew, Rock Keey & Fong Chong, William Woei & Verma, Meenakshi & Naushad, Mu. & Park, Young-Kwon & Lam, Su Shiung & Li, Qian & Huang, Runzhou, 2023. "Biomass-based carbon quantum dots for polycrystalline silicon solar cells with enhanced photovoltaic performance," Energy, Elsevier, vol. 274(C).
  • Handle: RePEc:eee:energy:v:274:y:2023:i:c:s036054422300748x
    DOI: 10.1016/j.energy.2023.127354
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422300748X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127354?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xingli Zou & Li Ji & Jianbang Ge & Donald R. Sadoway & Edward T. Yu & Allen J. Bard, 2019. "Electrodeposition of crystalline silicon films from silicon dioxide for low-cost photovoltaic applications," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    2. Shanshan Hu & Xibo Pei & Lunliang Duan & Zhou Zhu & Yanhua Liu & Junyu Chen & Tao Chen & Ping Ji & Qianbing Wan & Jian Wang, 2021. "A mussel-inspired film for adhesion to wet buccal tissue and efficient buccal drug delivery," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    3. Yuqiong Sun & Shuting Liu & Luyi Sun & Shuangshuang Wu & Guangqi Hu & Xiaoliang Pang & Andrew T. Smith & Chaofan Hu & Songshan Zeng & Weixing Wang & Yingliang Liu & Mingtao Zheng, 2020. "Ultralong lifetime and efficient room temperature phosphorescent carbon dots through multi-confinement structure design," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    4. Haiyao Yang & Yingliang Liu & Zhouyi Guo & Bingfu Lei & Jianle Zhuang & Xuejie Zhang & Zhiming Liu & Chaofan Hu, 2019. "Hydrophobic carbon dots with blue dispersed emission and red aggregation-induced emission," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    5. Sangmoo Jeong & Michael D. McGehee & Yi Cui, 2013. "All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency," Nature Communications, Nature, vol. 4(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei, Jianguang & Liang, Shuang & Zhang, Dong & Li, Jiangtao & Zhou, Runnan, 2023. "Frozen core experimental study on oil-water distribution characteristics at different stages of water flooding in low permeability oil reservoirs," Energy, Elsevier, vol. 278(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yingxiang Zhai & Shujun Li & Jian Li & Shouxin Liu & Tony D. James & Jonathan L. Sessler & Zhijun Chen, 2023. "Room temperature phosphorescence from natural wood activated by external chloride anion treatment," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Kaifa Du & Enlai Gao & Chunbo Zhang & Yongsong Ma & Peilin Wang & Rui Yu & Wenmiao Li & Kaiyuan Zheng & Xinhua Cheng & Diyong Tang & Bowen Deng & Huayi Yin & Dihua Wang, 2023. "An iron-base oxygen-evolution electrode for high-temperature electrolyzers," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Huai Chen & Mingyang Wei & Yantao He & Jehad Abed & Sam Teale & Edward H. Sargent & Zhenyu Yang, 2022. "Germanium silicon oxide achieves multi-coloured ultra-long phosphorescence and delayed fluorescence at high temperature," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Koosha Nassiri Nazif & Alwin Daus & Jiho Hong & Nayeun Lee & Sam Vaziri & Aravindh Kumar & Frederick Nitta & Michelle E. Chen & Siavash Kananian & Raisul Islam & Kwan-Ho Kim & Jin-Hong Park & Ada S. Y, 2021. "High-specific-power flexible transition metal dichalcogenide solar cells," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    5. Bijiang Geng & Jinyan Hu & Yuan Li & Shini Feng & Dengyu Pan & Lingyan Feng & Longxiang Shen, 2022. "Near-infrared phosphorescent carbon dots for sonodynamic precision tumor therapy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:274:y:2023:i:c:s036054422300748x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.