IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v261y2022ipbs036054422202237x.html
   My bibliography  Save this article

Nonlinear dynamic model for the free rotor of the swash plate-rotating hydraulic transformer

Author

Listed:
  • Bao, Qianqian
  • Zhou, Junjie
  • Jing, Chongbo
  • Zhao, Huipeng
  • Wu, Yi
  • Zhang, Zhu

Abstract

Hydraulic transformer (HT) is an energy conservation component used in the common pressure rail system and achieves an excellent energy-saving effect in construction machinery and vehicle transmission. This paper reports a complete nonlinear dynamic model and validation for the free rotor in a swash plate-rotating hydraulic transformer (SPRHT), accounting for various time-varying effects. A parameter characterization model for the oil properties considering gas-liquid phase and pressure is described. Based on the lumped element method, the fluid dynamic model for the working chambers is established, taking account of the variation of the control volume/flow area in the working chambers and leakage. The dynamic model for the free rotor is constructed, accounting for the piston distribution and nonlinear friction. Combining the above models, the speed of the free rotor is solved by the Runge-Kutta method. The SPRHT is simulated in the AMESim. Particularly, a prototype is developed, and the dynamic test is carried out. Then the potential of the nonlinear model for the free rotor is verified. The proposed nonlinear dynamic model of the free rotor can be used for the dynamic behavior analysis and energy efficiency optimization of the HT.

Suggested Citation

  • Bao, Qianqian & Zhou, Junjie & Jing, Chongbo & Zhao, Huipeng & Wu, Yi & Zhang, Zhu, 2022. "Nonlinear dynamic model for the free rotor of the swash plate-rotating hydraulic transformer," Energy, Elsevier, vol. 261(PB).
  • Handle: RePEc:eee:energy:v:261:y:2022:i:pb:s036054422202237x
    DOI: 10.1016/j.energy.2022.125355
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422202237X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125355?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chongbo Jing & Junjie Zhou & Shihua Yuan & Siyuan Zhao, 2018. "Research on the Pressure Ratio Characteristics of a Swash Plate-Rotating Hydraulic Transformer," Energies, MDPI, vol. 11(6), pages 1-11, June.
    2. Zhou, Junjie & Jing, Chongbo & Wu, Wei, 2020. "Energy efficiency modeling and validation of a novel swash plate-rotating type hydraulic transformer," Energy, Elsevier, vol. 193(C).
    3. Wu, Wei & Hu, Jibin & Jing, Chongbo & Jiang, Zhonglin & Yuan, Shihua, 2014. "Investigation of energy efficient hydraulic hybrid propulsion system for automobiles," Energy, Elsevier, vol. 73(C), pages 497-505.
    4. Zhou, Junjie & Wei, Chao & Hu, Jibin, 2015. "A novel approach for predicting thermal effects of gas cavitation in hydraulic circuits," Energy, Elsevier, vol. 83(C), pages 576-582.
    5. Wu, Wei & Hu, Jibin & Yuan, Shihua & Di, Chongfeng, 2016. "A hydraulic hybrid propulsion method for automobiles with self-adaptive system," Energy, Elsevier, vol. 114(C), pages 683-692.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Junjie & Jing, Chongbo & Wu, Wei, 2020. "Energy efficiency modeling and validation of a novel swash plate-rotating type hydraulic transformer," Energy, Elsevier, vol. 193(C).
    2. Liu, Huanlong & Jiang, Yue & Li, Shun, 2019. "Design and downhill speed control of an electric-hydrostatic hydraulic hybrid powertrain in battery-powered rail vehicles," Energy, Elsevier, vol. 187(C).
    3. Wang, He & Chen, Zhen & Huang, Jiahai, 2021. "Improvement of vibration frequency and energy efficiency in the uniaxial electro-hydraulic shaking tables for sinusoidal vibration waveform," Energy, Elsevier, vol. 218(C).
    4. Wu, Wei & Hu, Jibin & Yuan, Shihua & Di, Chongfeng, 2016. "A hydraulic hybrid propulsion method for automobiles with self-adaptive system," Energy, Elsevier, vol. 114(C), pages 683-692.
    5. Zewen Meng & Tiezhu Zhang & Hongxin Zhang & Qinghai Zhao & Jian Yang, 2021. "Energy Management Strategy for an Electromechanical-Hydraulic Coupled Power Electric Vehicle Considering the Optimal Speed Threshold," Energies, MDPI, vol. 14(17), pages 1-12, August.
    6. Liu, Huanlong & Chen, Guanpeng & Xie, Chixin & Li, Dafa & Wang, Jiawei & Li, Shun, 2020. "Research on energy-saving characteristics of battery-powered electric-hydrostatic hydraulic hybrid rail vehicles," Energy, Elsevier, vol. 205(C).
    7. Kwon, Hyukjoon & Sprengel, Michael & Ivantysynova, Monika, 2016. "Thermal modeling of a hydraulic hybrid vehicle transmission based on thermodynamic analysis," Energy, Elsevier, vol. 116(P1), pages 650-660.
    8. Nie, Chunhui & Shao, Yimin & Mechefske, Chris K. & Cheng, Min & Wang, Liming, 2021. "Power distribution method for a parallel hydraulic-pneumatic hybrid system using a piecewise function," Energy, Elsevier, vol. 233(C).
    9. Zhou, Junjie & Wei, Chao & Hu, Jibin, 2015. "A novel approach for predicting thermal effects of gas cavitation in hydraulic circuits," Energy, Elsevier, vol. 83(C), pages 576-582.
    10. Hyukjoon Kwon & Monika Ivantysynova, 2020. "System Characteristics Analysis for Energy Management of Power-Split Hydraulic Hybrids," Energies, MDPI, vol. 13(7), pages 1-23, April.
    11. Ge, Mingming & Manikkam, Pratulya & Ghossein, Joe & Kumar Subramanian, Roshan & Coutier-Delgosha, Olivier & Zhang, Guangjian, 2022. "Dynamic mode decomposition to classify cavitating flow regimes induced by thermodynamic effects," Energy, Elsevier, vol. 254(PC).
    12. Kwon, Hyukjoon & Ivantysynova, Monika, 2021. "Experimental and theoretical studies on energy characteristics of hydraulic hybrids for thermal management," Energy, Elsevier, vol. 223(C).
    13. He, Xiangyu & Liu, Hao & He, Shanghong & Hu, Bili & Xiao, Guangxin, 2019. "Research on the energy efficiency of energy regeneration systems for a battery-powered hydrostatic vehicle," Energy, Elsevier, vol. 178(C), pages 400-418.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:261:y:2022:i:pb:s036054422202237x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.