IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v186y2019ics0360544219314276.html
   My bibliography  Save this article

Investigation of an energy-saving double-thermally coupled extractive distillation for separating ternary system benzene/toluene/cyclohexane

Author

Listed:
  • Yang, Ao
  • Su, Yang
  • Chien, I-Lung
  • Jin, Saimeng
  • Yan, Chenglei
  • Wei, Shun'an
  • Shen, Weifeng

Abstract

An intensified scheme for the separation of ternary azeotropic system is explored to reduce the energy consumption and recycle important organic solvents. Herein, a novel double-thermally coupled ternary extractive distillation (DTCTED) for separating azeotropic system benzene/toluene/cyclohexane (denoted as B/T/CH) is proposed to achieve energy-saving and emissions reduction. Thermodynamic feasible insights of the B/T/CH using dimethyl formamide as entrainer are firstly analyzed via residue curve maps to find separation constraints. Following that, the proposed intensified scheme is optimized via the in-house multi-objective genetic algorithm software while using total annual cost and CO2 emissions as objective functions. The results show that the total annual cost and CO2 emissions of the proposed intensified DTCTED scheme are significantly reduced by 18.60% and 20.22% compared with the existing single-thermally coupled ternary extractive distillation process. Furthermore, exergy loss and relative volatility are introduced to explore the essence of energy-saving in the proposed DTCTED scheme.

Suggested Citation

  • Yang, Ao & Su, Yang & Chien, I-Lung & Jin, Saimeng & Yan, Chenglei & Wei, Shun'an & Shen, Weifeng, 2019. "Investigation of an energy-saving double-thermally coupled extractive distillation for separating ternary system benzene/toluene/cyclohexane," Energy, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:energy:v:186:y:2019:i:c:s0360544219314276
    DOI: 10.1016/j.energy.2019.07.086
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219314276
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.07.086?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yıldız Koç, 2019. "Parametric Optimisation of an ORC in a Wood Chipboard Production Facility to Recover Waste Heat Produced from the Drying and Steam Production Process," Energies, MDPI, vol. 12(19), pages 1-22, September.
    2. Shaheen, Irum & Ahmad, Khuram Shahzad & Zequine, Camila & Gupta, Ram K. & Thomas, Andrew G. & Malik, Mohammad Azad, 2021. "Modified sol-gel synthesis of Co3O4 nanoparticles using organic template for electrochemical energy storage," Energy, Elsevier, vol. 218(C).
    3. Dai, Min & Yang, Han & Yang, Fusheng & Zhang, Zaoxiao & Yu, Yunsong & Liu, Guilian & Feng, Xiao, 2022. "Multi-strategy Ensemble Non-dominated sorting genetic Algorithm-II (MENSGA-II) and application in energy-enviro-economic multi-objective optimization of separation for isopropyl alcohol/diisopropyl et," Energy, Elsevier, vol. 254(PA).
    4. Zhou, Hao & Li, Hong & Geng, Xueli & Gao, Xin, 2023. "Techno-economic and energetic assessment of an innovative energy-saving separation process for electronic-grade acetone purification," Energy, Elsevier, vol. 282(C).
    5. Sun, Shirui & Chun, Wei & Yang, Ao & Shen, Weifeng & Cui, Peizhe & Ren, Jingzheng, 2020. "The separation of ternary azeotropic mixture: Thermodynamic insight and improved multi-objective optimization," Energy, Elsevier, vol. 206(C).
    6. Duan, Cong & Li, Chunli, 2023. "Energy-saving improvement of heat integration for separating dilute azeotropic components in extractive distillation," Energy, Elsevier, vol. 263(PC).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:186:y:2019:i:c:s0360544219314276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.