IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v166y2019icp1207-1215.html
   My bibliography  Save this article

Sustainable energy storage for solar home systems in rural Sub-Saharan Africa – A comparative examination of lifecycle aspects of battery technologies for circular economy, with emphasis on the South African context

Author

Listed:
  • Charles, Rhys G.
  • Davies, Matthew L.
  • Douglas, Peter
  • Hallin, Ingrid L.
  • Mabbett, Ian

Abstract

Photovoltaics (PV) are increasingly important for electrification in rural Sub-Saharan Africa, but what is the best battery technology to use? To explore this question, a small-scale domestic PV system for South Africa (20-year lifetime) to deliver 1.42 kWh electricity from batteries overnight with 10-h discharge was costed with various Li-ion, Pb-acid and Aquion aqueous hybrid ion batteries (AHIBs). Environmental impact; compatibility with circular economy; potential for cost-reduction through lifetime extension; and valorisation of batteries at end-of-life is discussed. Batteries are 81–93% of system costs, and battery production required over the system lifetime would emit 743, 674 and 6060 kg CO2-eq (Pb-acid, Li-ion and AHIBs respectively). Hazardous materials in Li-ion and Pb-acid batteries pose risks at end-of-life. Li-ion and AHIBs face potential resource supply constraints due to use of Co, Li and graphite. Closed-loop recycling and refurbishment of Pb-acid batteries is well established in South Africa. Currently, no African facilities for Li-ion or AHIB recycling exist, with little opportunity to retain material value from these batteries within the region. Despite lower efficiencies and shorter lifetimes, Pb-acid batteries, which are readily available from domestic manufacturing at low cost, are the current best choice for sustainable small-scale domestic PV systems in South Africa.

Suggested Citation

  • Charles, Rhys G. & Davies, Matthew L. & Douglas, Peter & Hallin, Ingrid L. & Mabbett, Ian, 2019. "Sustainable energy storage for solar home systems in rural Sub-Saharan Africa – A comparative examination of lifecycle aspects of battery technologies for circular economy, with emphasis on the South ," Energy, Elsevier, vol. 166(C), pages 1207-1215.
  • Handle: RePEc:eee:energy:v:166:y:2019:i:c:p:1207-1215
    DOI: 10.1016/j.energy.2018.10.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218320437
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.10.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Andriamahefazafy & P. Failler, 2022. "Towards a Circular Economy for African Islands: an Analysis of Existing Baselines and Strategies," Circular Economy and Sustainability,, Springer.
    2. Stevovic, Ivan & Mirjanic, Dragoljub & Petrovic, Natasa, 2021. "Integration of solar energy by nature-inspired optimization in the context of circular economy," Energy, Elsevier, vol. 235(C).
    3. Gláucya Daú & Annibal Scavarda & Luiz Felipe Scavarda & Vivianne Julianelli Taveira Portugal, 2019. "The Healthcare Sustainable Supply Chain 4.0: The Circular Economy Transition Conceptual Framework with the Corporate Social Responsibility Mirror," Sustainability, MDPI, vol. 11(12), pages 1-19, June.
    4. Mao, Jiachen & Jafari, Mehdi & Botterud, Audun, 2022. "Planning low-carbon distributed power systems: Evaluating the role of energy storage," Energy, Elsevier, vol. 238(PA).
    5. Stevović, Ivan & Mirjanić, Dragoljub & Stevović, Svetlana, 2019. "Possibilities for wider investment in solar energy implementation," Energy, Elsevier, vol. 180(C), pages 495-510.
    6. Emmanuel Shittu & Maria Kolokotroni & Valentina Stojceska, 2019. "Environmental Impact of the High Concentrator Photovoltaic Thermal 2000x System," Sustainability, MDPI, vol. 11(24), pages 1-21, December.
    7. Ayetor, G.K. & Mbonigaba, Innocent & Sunnu, Albert K. & Nyantekyi-Kwakye, Baafour, 2021. "Impact of replacing ICE bus fleet with electric bus fleet in Africa: A lifetime assessment," Energy, Elsevier, vol. 221(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:166:y:2019:i:c:p:1207-1215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.