IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v159y2018icp203-215.html
   My bibliography  Save this article

Novel conceptual methodology for hydrogen network design with minimum compression work

Author

Listed:
  • Deng, Chun
  • Zhu, Meiqian
  • Zhou, Yuhang
  • Feng, Xiao

Abstract

Refinery hydrogen consumers (e.g., hydrocrackers and hydro-treaters) are normally operated at high pressure. The make-up hydrogen and recycle hydrogen compressors are commonly used to increase the pressure of the hydrogen streams. This requires compression work, which can be a major contributor to the operating cost. Therefore, apart from minimizing the flowrate of hydrogen utility, it is also important to reduce the compression work. This paper presents an improved nearest neighbors algorithm and introduces the pressure-impurity diagram for designing hydrogen networks with minimum compression work. Three literature case studies are solved to illustrate the proposed methodology. Validated using mathematical models, the results show that the hydrogen network can be designed to achieve the minimum hydrogen utility and compression work. The number of compressors can also be reduced.

Suggested Citation

  • Deng, Chun & Zhu, Meiqian & Zhou, Yuhang & Feng, Xiao, 2018. "Novel conceptual methodology for hydrogen network design with minimum compression work," Energy, Elsevier, vol. 159(C), pages 203-215.
  • Handle: RePEc:eee:energy:v:159:y:2018:i:c:p:203-215
    DOI: 10.1016/j.energy.2018.06.135
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218312003
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.06.135?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Deng, Chun & Zhou, Yuhang & Chen, Cheng-Liang & Feng, Xiao, 2015. "Systematic approach for targeting interplant hydrogen networks," Energy, Elsevier, vol. 90(P1), pages 68-88.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Xuepeng & Liu, Jian & Deng, Chun & Lee, Jui-Yuan & Tan, Raymond R., 2020. "Synthesis of refinery hydrogen network integrated with hydrogen turbines for power recovery," Energy, Elsevier, vol. 201(C).
    2. Shukla, Gaurav & Chaturvedi, Nitin Dutt, 2023. "Targeting compression work in hydrogen allocation network with parametric uncertainties," Energy, Elsevier, vol. 262(PA).
    3. Zhang, Qiao & Yang, Sen & Feng, Xiao, 2021. "Thermodynamic principle based work exchanger network integration for cost-effective refinery hydrogen networks," Energy, Elsevier, vol. 230(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xuepeng & Liu, Jian & Deng, Chun & Lee, Jui-Yuan & Tan, Raymond R., 2020. "Synthesis of refinery hydrogen network integrated with hydrogen turbines for power recovery," Energy, Elsevier, vol. 201(C).
    2. Zhang, Qiao & Yang, Sen & Feng, Xiao, 2021. "Thermodynamic principle based work exchanger network integration for cost-effective refinery hydrogen networks," Energy, Elsevier, vol. 230(C).
    3. Dai, Wang & Shen, Renjie & Zhang, Di & Liu, Guilian, 2017. "The integration based method for identifying the variation trend of fresh hydrogen consumption and optimal purification feed," Energy, Elsevier, vol. 119(C), pages 732-743.
    4. Shukla, Gaurav & Chaturvedi, Nitin Dutt, 2023. "Targeting compression work in hydrogen allocation network with parametric uncertainties," Energy, Elsevier, vol. 262(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:159:y:2018:i:c:p:203-215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.