IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v37y2009i12p5226-5238.html
   My bibliography  Save this article

The impact of ethanol and ETBE blending on refinery operations and GHG-emissions

Author

Listed:
  • Croezen, H.
  • Kampman, B.

Abstract

The sustainability of biofuels, including the greenhouse gas (GHG) reduction that they achieve, is getting increased attention. Life cycle analyses (LCAs) of biofuels production routes show that the GHG savings may vary significantly for different biofuels. An increasing number of governments are therefore looking for options to differentiate between biofuels according to their actual GHG savings. Accurate calculations of GHG savings thus become increasingly important. This paper deals with an omission of current LCAs for ethanol and ETBE blends, which leads to an underestimation of their calculated GHG savings. Current studies do not take into account that refiners will adjust their refinery operation when bioethanol or ETBE is added, because of the different characteristics of these products. The analysis indicates that the net effect of these refinery modifications on the GHG savings is positive, i.e. GHG-emissions reduce in both cases. The emission reduction is highest in the case of ETBE. We recommend to include this effect in future LCA calculations for ethanol and ETBE. As the calculation model used for this study is only a simplified representation of the EU refinery sector, we also advise to perform a more detailed analysis of these effects using more elaborate refinery models.

Suggested Citation

  • Croezen, H. & Kampman, B., 2009. "The impact of ethanol and ETBE blending on refinery operations and GHG-emissions," Energy Policy, Elsevier, vol. 37(12), pages 5226-5238, December.
  • Handle: RePEc:eee:enepol:v:37:y:2009:i:12:p:5226-5238
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(09)00564-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yee, Kian Fei & Mohamed, Abdul Rahman & Tan, Soon Huat, 2013. "A review on the evolution of ethyl tert-butyl ether (ETBE) and its future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 604-620.
    2. Adrián Bautista-Herrera & Francisco Ortiz-Arango & José Álvarez-García, 2021. "Profitability Using Second-Generation Bioethanol in Gasoline Produced in Mexico," Energies, MDPI, vol. 14(8), pages 1-16, April.

    More about this item

    Keywords

    LCA Biofuels Refining;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:37:y:2009:i:12:p:5226-5238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.