IDEAS home Printed from https://ideas.repec.org/a/eee/empfin/v40y2017icp174-200.html
   My bibliography  Save this article

Marked Hawkes process modeling of price dynamics and volatility estimation

Author

Listed:
  • Lee, Kyungsub
  • Seo, Byoung Ki

Abstract

A simple Hawkes model have been developed for the price tick structure dynamics incorporating market microstructure noise and trade clustering. In this paper, the model is extended with random mark to deal with more realistic price tick structures of equities. We examine the impact of jump in price dynamics to the future movements and dependency between the jump sizes and ground intensities. We also derive the volatility formula based on stochastic and statistical methods and compare with realized volatility in simulation and empirical studies. The marked Hawkes model is useful to estimate the intraday volatility similarly in the case of simple Hawkes model.

Suggested Citation

  • Lee, Kyungsub & Seo, Byoung Ki, 2017. "Marked Hawkes process modeling of price dynamics and volatility estimation," Journal of Empirical Finance, Elsevier, vol. 40(C), pages 174-200.
  • Handle: RePEc:eee:empfin:v:40:y:2017:i:c:p:174-200
    DOI: 10.1016/j.jempfin.2016.08.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0927539816300810
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jempfin.2016.08.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bowsher, Clive G., 2007. "Modelling security market events in continuous time: Intensity based, multivariate point process models," Journal of Econometrics, Elsevier, vol. 141(2), pages 876-912, December.
    2. Michael H. Breitner & Christian Dunis & Hans-Jörg Mettenheim & Christopher Neely & Georgios Sermpinis & Hamad Alsayed & Frank McGroarty, 2014. "Ultra‐High‐Frequency Algorithmic Arbitrage Across International Index Futures," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(6), pages 391-408, September.
    3. Emmanuel Bacry & Jean-Fran�ois Muzy, 2014. "Hawkes model for price and trades high-frequency dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 14(7), pages 1147-1166, July.
    4. Rama Cont & Adrien de Larrard, 2013. "Price Dynamics in a Markovian Limit Order Market," Post-Print hal-00552252, HAL.
    5. José Da Fonseca & Riadh Zaatour, 2015. "Clustering and Mean Reversion in a Hawkes Microstructure Model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 35(9), pages 813-838, September.
    6. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    7. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    8. José Da Fonseca & Riadh Zaatour, 2014. "Hawkes Process: Fast Calibration, Application to Trade Clustering, and Diffusive Limit," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(6), pages 548-579, June.
    9. E. Bacry & S. Delattre & M. Hoffmann & J. F. Muzy, 2013. "Modelling microstructure noise with mutually exciting point processes," Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 65-77, January.
    10. Alain P. Chaboud & Benjamin Chiquoine & Erik Hjalmarsson & Clara Vega, 2014. "Rise of the Machines: Algorithmic Trading in the Foreign Exchange Market," Journal of Finance, American Finance Association, vol. 69(5), pages 2045-2084, October.
    11. Emmanuel Bacry & Sylvain Delattre & Marc Hoffmann & Jean-François Muzy, 2013. "Modelling microstructure noise with mutually exciting point processes," Post-Print hal-01313995, HAL.
    12. Hansen, Peter R. & Lunde, Asger, 2006. "Realized Variance and Market Microstructure Noise," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 127-161, April.
    13. Thierry Foucault, 2012. "Algorithmic trading: issues and preliminary evidence," Post-Print hal-00711389, HAL.
    14. Russell, Jeffrey R. & Engle, Robert F., 2005. "A Discrete-State Continuous-Time Model of Financial Transactions Prices and Times: The Autoregressive Conditional Multinomial-Autoregressive Conditional Duration Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 166-180, April.
    15. Emmanuel Bacry & Thibault Jaisson & Jean--François Muzy, 2016. "Estimation of slowly decreasing Hawkes kernels: application to high-frequency order book dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 16(8), pages 1179-1201, August.
    16. Rama Cont & Sasha Stoikov & Rishi Talreja, 2010. "A Stochastic Model for Order Book Dynamics," Operations Research, INFORMS, vol. 58(3), pages 549-563, June.
    17. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    18. Lo, Andrew W. & MacKinlay, A. Craig & Zhang, June, 2002. "Econometric models of limit-order executions," Journal of Financial Economics, Elsevier, vol. 65(1), pages 31-71, July.
    19. Aït-Sahalia, Yacine & Mykland, Per A. & Zhang, Lan, 2011. "Ultra high frequency volatility estimation with dependent microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 160-175, January.
    20. Large, Jeremy, 2007. "Measuring the resiliency of an electronic limit order book," Journal of Financial Markets, Elsevier, vol. 10(1), pages 1-25, February.
    21. Pietro Fodra & Huyên Pham, 2015. "Semi-Markov Model for Market Microstructure," Applied Mathematical Finance, Taylor & Francis Journals, vol. 22(3), pages 261-295, July.
    22. Frédéric Abergel & Aymen Jedidi, 2013. "A Mathematical Approach To Order Book Modeling," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 16(05), pages 1-40.
    23. Pekka Malo & Teemu Pennanen, 2012. "Reduced form modeling of limit order markets," Quantitative Finance, Taylor & Francis Journals, vol. 12(7), pages 1025-1036, April.
    24. Hoffmann, Peter, 2014. "A dynamic limit order market with fast and slow traders," Journal of Financial Economics, Elsevier, vol. 113(1), pages 156-169.
    25. Frédéric Abergel & Aymen Jedidi, 2013. "A Mathematical Approach to Order Book Modelling," Post-Print hal-00621253, HAL.
    26. Frederic Abergel & Aymen Jedidi, 2010. "A Mathematical Approach to Order Book Modeling," Papers 1010.5136, arXiv.org, revised Mar 2013.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Kyungsub, 2023. "Recurrent neural network based parameter estimation of Hawkes model on high-frequency financial data," Finance Research Letters, Elsevier, vol. 55(PA).
    2. Herrera, R. & Clements, A.E., 2018. "Point process models for extreme returns: Harnessing implied volatility," Journal of Banking & Finance, Elsevier, vol. 88(C), pages 161-175.
    3. Sobin Joseph & Shashi Jain, 2024. "Non-Parametric Estimation of Multi-dimensional Marked Hawkes Processes," Papers 2402.04740, arXiv.org.
    4. Ji, Jingru & Wang, Donghua & Xu, Dinghai & Xu, Chi, 2020. "Combining a self-exciting point process with the truncated generalized Pareto distribution: An extreme risk analysis under price limits," Journal of Empirical Finance, Elsevier, vol. 57(C), pages 52-70.
    5. Timoth'ee Fabre & Ioane Muni Toke, 2024. "Neural Hawkes: Non-Parametric Estimation in High Dimension and Causality Analysis in Cryptocurrency Markets," Papers 2401.09361, arXiv.org, revised Jan 2024.
    6. Kyungsub Lee, 2023. "Recurrent neural network based parameter estimation of Hawkes model on high-frequency financial data," Papers 2304.11883, arXiv.org.
    7. Markus Vogl, 2022. "Quantitative modelling frontiers: a literature review on the evolution in financial and risk modelling after the financial crisis (2008–2019)," SN Business & Economics, Springer, vol. 2(12), pages 1-69, December.
    8. Konark Jain & Nick Firoozye & Jonathan Kochems & Philip Treleaven, 2024. "Limit Order Book Simulations: A Review," Papers 2402.17359, arXiv.org, revised Mar 2024.
    9. Kyungsub Lee, 2024. "Discrete Hawkes process with flexible residual distribution and filtered historical simulation," Papers 2401.13890, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Kyungsub & Seo, Byoung Ki, 2017. "Modeling microstructure price dynamics with symmetric Hawkes and diffusion model using ultra-high-frequency stock data," Journal of Economic Dynamics and Control, Elsevier, vol. 79(C), pages 154-183.
    2. José Da Fonseca & Riadh Zaatour, 2017. "Correlation and Lead–Lag Relationships in a Hawkes Microstructure Model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 37(3), pages 260-285, March.
    3. Kyungsub Lee, 2022. "Application of Hawkes volatility in the observation of filtered high-frequency price process in tick structures," Papers 2207.05939, arXiv.org.
    4. Marcello Rambaldi & Emmanuel Bacry & Jean-Franc{c}ois Muzy, 2018. "Disentangling and quantifying market participant volatility contributions," Papers 1807.07036, arXiv.org.
    5. Kyungsub Lee & Byoung Ki Seo, 2021. "Analytic formula for option margin with liquidity costs under dynamic delta hedging," Papers 2103.15302, arXiv.org.
    6. Aurélien Alfonsi & Pierre Blanc, 2016. "Dynamic optimal execution in a mixed-market-impact Hawkes price model," Finance and Stochastics, Springer, vol. 20(1), pages 183-218, January.
    7. Aurélien Alfonsi & Pierre Blanc, 2016. "Dynamic optimal execution in a mixed-market-impact Hawkes price model," Finance and Stochastics, Springer, vol. 20(1), pages 183-218, January.
    8. Frédéric Abergel & Aymen Jedidi, 2015. "Long-Time Behavior of a Hawkes Process--Based Limit Order Book," Post-Print hal-01121711, HAL.
    9. Da Fonseca, José & Malevergne, Yannick, 2021. "A simple microstructure model based on the Cox-BESQ process with application to optimal execution policy," Journal of Economic Dynamics and Control, Elsevier, vol. 128(C).
    10. Clinet, Simon & Yoshida, Nakahiro, 2017. "Statistical inference for ergodic point processes and application to Limit Order Book," Stochastic Processes and their Applications, Elsevier, vol. 127(6), pages 1800-1839.
    11. repec:hal:wpaper:hal-01121711 is not listed on IDEAS
    12. Maxime Morariu-Patrichi & Mikko Pakkanen, 2018. "State-dependent Hawkes processes and their application to limit order book modelling," CREATES Research Papers 2018-26, Department of Economics and Business Economics, Aarhus University.
    13. Maxime Morariu-Patrichi & Mikko S. Pakkanen, 2018. "State-dependent Hawkes processes and their application to limit order book modelling," Papers 1809.08060, arXiv.org, revised Sep 2021.
    14. Dupret, Jean-Loup & Hainaut, Donatien, 2023. "Optimal liquidation under indirect price impact with propagator," LIDAM Discussion Papers ISBA 2023012, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    15. Xiaofei Lu & Frédéric Abergel, 2018. "High dimensional Hawkes processes for limit order books Modelling, empirical analysis and numerical calibration," Post-Print hal-01686122, HAL.
    16. Maxime Morariu-Patrichi & Mikko S. Pakkanen, 2017. "Hybrid marked point processes: characterisation, existence and uniqueness," Papers 1707.06970, arXiv.org, revised Oct 2018.
    17. Emmanuel Bacry & Iacopo Mastromatteo & Jean-Franc{c}ois Muzy, 2015. "Hawkes processes in finance," Papers 1502.04592, arXiv.org, revised May 2015.
    18. Massil Achab & Emmanuel Bacry & Jean-Franc{c}ois Muzy & Marcello Rambaldi, 2017. "Analysis of order book flows using a nonparametric estimation of the branching ratio matrix," Papers 1706.03411, arXiv.org.
    19. Xiaofei Lu & Frédéric Abergel, 2017. "Limit order book modelling with high dimensional Hawkes processes," Working Papers hal-01512430, HAL.
    20. Ruihua Ruan & Emmanuel Bacry & Jean-Franc{c}ois Muzy, 2023. "The self-exciting nature of the bid-ask spread dynamics," Papers 2303.02038, arXiv.org, revised Jun 2023.
    21. Ulrich Horst & Michael Paulsen, 2015. "A law of large numbers for limit order books," Papers 1501.00843, arXiv.org.

    More about this item

    Keywords

    Tick price dynamics; Marked Hawkes process; Volatility; Ultra-high-frequency data; Impact of mark;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:empfin:v:40:y:2017:i:c:p:174-200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jempfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.