Advanced Search
MyIDEAS: Login

A Discrete-State Continuous-Time Model of Financial Transactions Prices and Times: The Autoregressive Conditional Multinomial-Autoregressive Conditional Duration Model

Contents:

Author Info

  • Russell, Jeffrey R.
  • Engle, Robert F.

Abstract

No abstract is available for this item.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.ingentaconnect.com/content/asa/jbes/2005/00000023/00000002/art00007
File Function: full text
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by American Statistical Association in its journal Journal of Business and Economic Statistics.

Volume (Year): 23 (2005)
Issue (Month): (April)
Pages: 166-180

as in new window
Handle: RePEc:bes:jnlbes:v:23:y:2005:p:166-180

Contact details of provider:
Web page: http://www.amstat.org/publications/jbes/index.cfm?fuseaction=main

Order Information:
Web: http://www.amstat.org/publications/index.html

Related research

Keywords:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Nyberg, Henri, 2011. "Forecasting the direction of the US stock market with dynamic binary probit models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 561-578, April.
  2. Renault, Eric & van der Heijden, Thijs & Werker, Bas J.M., 2014. "The dynamic mixed hitting-time model for multiple transaction prices and times," Journal of Econometrics, Elsevier, vol. 180(2), pages 233-250.
  3. Wing Lon Ng, 2010. "Dynamic Order Submission And Herding Behavior In Electronic Trading," Journal of Financial Research, Southern Finance Association & Southwestern Finance Association, vol. 33(1), pages 27-43.
  4. Georges Dionne & Pierre Duchesne & Maria Pacurar, 2005. "Intraday Value at Risk (IVaR) Using Tick-by-Tick Data with Application to the Toronto Stock Exchange," Cahiers de recherche 0533, CIRPEE.
  5. Drew Creal & Siem Jan Koopman & Andre Lucas, 2009. "A General Framework for Observation Driven Time-Varying Parameter Models," Global COE Hi-Stat Discussion Paper Series gd08-038, Institute of Economic Research, Hitotsubashi University.
  6. Denisa Georgiana Banulescu & Gilbert Colletaz & Christophe Hurlin & Sessi Tokpavi, 2013. "High-Frequency Risk Measures," Working Papers halshs-00859456, HAL.
  7. Chen, Bin & Hong, Yongmiao, 2014. "A unified approach to validating univariate and multivariate conditional distribution models in time series," Journal of Econometrics, Elsevier, vol. 178(P1), pages 22-44.
  8. Christensen, T.M. & Hurn, A.S. & Lindsay, K.A., 2012. "Forecasting spikes in electricity prices," International Journal of Forecasting, Elsevier, vol. 28(2), pages 400-411.
  9. Dungey, Mardi & Jeyasreedharan, Nagaratnam & Li, Tuo, 2010. "Modelling the Time Between Trades in the After-Hours Electronic Equity Futures Market," Working Papers 10451, University of Tasmania, School of Economics and Finance, revised 30 May 2012.
  10. Douglas, Christopher C. & Kolar, Marek, 2009. "Capturing the time dynamics of central bank intervention," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(5), pages 950-968, December.
  11. Stanislav Anatolyev & Dmitry Shakin, 2006. "Trade intensity in the Russian stock market:dynamics, distribution and determinants," Working Papers w0070, Center for Economic and Financial Research (CEFIR).
  12. Grammig, Joachim & Kehrle, Kerstin, 2008. "A new marked point process model for the federal funds rate target: Methodology and forecast evaluation," Journal of Economic Dynamics and Control, Elsevier, vol. 32(7), pages 2370-2396, July.
  13. Duan, Qihong & Wei, Ying & Chen, Zhiping, 2014. "Relationship between the benchmark interest rate and a macroeconomic indicator," Economic Modelling, Elsevier, vol. 38(C), pages 220-226.
  14. Drew Creal & Siem Jan Koopman & Andr� Lucas, 2008. "A General Framework for Observation Driven Time-Varying Parameter Models," Tinbergen Institute Discussion Papers 08-108/4, Tinbergen Institute.
  15. Allen, David & Chan, Felix & McAleer, Michael & Peiris, Shelton, 2008. "Finite sample properties of the QMLE for the Log-ACD model: Application to Australian stocks," Journal of Econometrics, Elsevier, vol. 147(1), pages 163-185, November.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:bes:jnlbes:v:23:y:2005:p:166-180. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.