IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v305y2023i3p1355-1365.html
   My bibliography  Save this article

Efficient estimation of a risk measure requiring two-stage simulation optimization

Author

Listed:
  • Wang, Tianxiang
  • Xu, Jie
  • Hu, Jian-Qiang
  • Chen, Chun-Hung

Abstract

This paper is concerned with the efficient estimation of the risk measure of a system where the estimation requires solving a two-stage simulation optimization problem. The first stage samples risk factors that specify a second stage simulation optimization problem. The second stage solves a simulation optimization problem and outputs the best performance of the system under the realized risk factors, which are then aggregated across all first stage samples to produce an estimate of the risk measure. Applications of such an estimation scheme arise frequently in important industries such as financial, healthcare, logistics, and manufacturing. Because a large number of first stage samples are typically needed, each of which requires solving a computationally expensive simulation optimization problem, the two-stage simulation optimization approach faces a major computational efficiency challenge. In response to this challenge, this paper proposes a sequential simulation budget allocation procedure that determines the allocation of simulation budget based on a score known as revised probability of sign change for each decision under each scenario. The consistency of the proposed procedure is proved and the computational efficiency gain of the proposed is demonstrated using both benchmark test functions and two test cases in the context of financial portfolio risk estimation and healthcare system resilience estimation.

Suggested Citation

  • Wang, Tianxiang & Xu, Jie & Hu, Jian-Qiang & Chen, Chun-Hung, 2023. "Efficient estimation of a risk measure requiring two-stage simulation optimization," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1355-1365.
  • Handle: RePEc:eee:ejores:v:305:y:2023:i:3:p:1355-1365
    DOI: 10.1016/j.ejor.2022.06.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221722005033
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2022.06.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hai Lan & Barry L. Nelson & Jeremy Staum, 2010. "A Confidence Interval Procedure for Expected Shortfall Risk Measurement via Two-Level Simulation," Operations Research, INFORMS, vol. 58(5), pages 1481-1490, October.
    2. Mark Broadie & Yiping Du & Ciamac C. Moallemi, 2015. "Risk Estimation via Regression," Operations Research, INFORMS, vol. 63(5), pages 1077-1097, October.
    3. Lee, Loo Hay & Chew, Ek Peng & Manikam, Puvaneswari, 2006. "A general framework on the simulation-based optimization under fixed computing budget," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1828-1841, November.
    4. Michael B. Gordy & Sandeep Juneja, 2010. "Nested Simulation in Portfolio Risk Measurement," Management Science, INFORMS, vol. 56(10), pages 1833-1848, October.
    5. Tianxiang Wang & Jie Xu & Jian-Qiang Hu, 2021. "A Study on Efficient Computing Budget Allocation for a Two-Stage Problem," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 38(02), pages 1-20, April.
    6. Helin Zhu & Joshua Hale & Enlu Zhou, 2018. "Simulation optimization of risk measures with adaptive risk levels," Journal of Global Optimization, Springer, vol. 70(4), pages 783-809, April.
    7. Groves, Matthew & Branke, Juergen, 2019. "Top-κ selection with pairwise comparisons," European Journal of Operational Research, Elsevier, vol. 274(2), pages 615-626.
    8. Yijie Peng & Chun-Hung Chen & Michael C. Fu & Jian-Qiang Hu, 2016. "Dynamic Sampling Allocation and Design Selection," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 195-208, May.
    9. Siyang Gao & Weiwei Chen & Leyuan Shi, 2017. "A New Budget Allocation Framework for the Expected Opportunity Cost," Operations Research, INFORMS, vol. 65(3), pages 787-803, June.
    10. Mark Broadie & Yiping Du & Ciamac C. Moallemi, 2011. "Efficient Risk Estimation via Nested Sequential Simulation," Management Science, INFORMS, vol. 57(6), pages 1172-1194, June.
    11. Barry L. Nelson & Julie Swann & David Goldsman & Wheyming Song, 2001. "Simple Procedures for Selecting the Best Simulated System When the Number of Alternatives is Large," Operations Research, INFORMS, vol. 49(6), pages 950-963, December.
    12. Giulia Pedrielli & K. Selcuk Candan & Xilun Chen & Logan Mathesen & Alireza Inanalouganji & Jie Xu & Chun-Hung Chen & Loo Hay Lee, 2019. "Generalized Ordinal Learning Framework (GOLF) for Decision Making with Future Simulated Data," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(06), pages 1-35, December.
    13. Huashuai Qu & Ilya O. Ryzhov & Michael C. Fu & Zi Ding, 2015. "Sequential Selection with Unknown Correlation Structures," Operations Research, INFORMS, vol. 63(4), pages 931-948, August.
    14. Jun Luo & L. Jeff Hong & Barry L. Nelson & Yang Wu, 2015. "Fully Sequential Procedures for Large-Scale Ranking-and-Selection Problems in Parallel Computing Environments," Operations Research, INFORMS, vol. 63(5), pages 1177-1194, October.
    15. Fei, Xin & Gülpınar, Nalân & Branke, Jürgen, 2019. "Efficient solution selection for two-stage stochastic programs," European Journal of Operational Research, Elsevier, vol. 277(3), pages 918-929.
    16. Yunpeng Sun & Daniel W. Apley & Jeremy Staum, 2011. "Efficient Nested Simulation for Estimating the Variance of a Conditional Expectation," Operations Research, INFORMS, vol. 59(4), pages 998-1007, August.
    17. Jürgen Branke & Stephen E. Chick & Christian Schmidt, 2007. "Selecting a Selection Procedure," Management Science, INFORMS, vol. 53(12), pages 1916-1932, December.
    18. Hui Xiao & Loo Hay Lee & Douglas Morrice & Chun-Hung Chen & Xiang Hu, 2021. "Ranking and selection for terminating simulation under sequential sampling," IISE Transactions, Taylor & Francis Journals, vol. 53(7), pages 735-750, April.
    19. Jie Xu & Edward Huang & Chun-Hung Chen & Loo Hay Lee, 2015. "Simulation Optimization: A Review and Exploration in the New Era of Cloud Computing and Big Data," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 32(03), pages 1-34.
    20. Wei Xie & Barry L. Nelson & Russell R. Barton, 2014. "A Bayesian Framework for Quantifying Uncertainty in Stochastic Simulation," Operations Research, INFORMS, vol. 62(6), pages 1439-1452, December.
    21. Teng, Suyan & Lee, Loo Hay & Chew, Ek Peng, 2010. "Integration of indifference-zone with multi-objective computing budget allocation," European Journal of Operational Research, Elsevier, vol. 203(2), pages 419-429, June.
    22. L. Jeff Hong & Sandeep Juneja & Guangwu Liu, 2017. "Kernel Smoothing for Nested Estimation with Application to Portfolio Risk Measurement," Operations Research, INFORMS, vol. 65(3), pages 657-673, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mingbin Ben Feng & Eunhye Song, 2020. "Optimal Nested Simulation Experiment Design via Likelihood Ratio Method," Papers 2008.13087, arXiv.org, revised Jul 2021.
    2. Liu, Xiaoyu & Yan, Xing & Zhang, Kun, 2024. "Kernel quantile estimators for nested simulation with application to portfolio value-at-risk measurement," European Journal of Operational Research, Elsevier, vol. 312(3), pages 1168-1177.
    3. Runhuan Feng & Peng Li, 2021. "Sample Recycling Method -- A New Approach to Efficient Nested Monte Carlo Simulations," Papers 2106.06028, arXiv.org.
    4. Feng, Ben Mingbin & Li, Johnny Siu-Hang & Zhou, Kenneth Q., 2022. "Green nested simulation via likelihood ratio: Applications to longevity risk management," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 285-301.
    5. David J. Eckman & Shane G. Henderson & Sara Shashaani, 2023. "Diagnostic Tools for Evaluating and Comparing Simulation-Optimization Algorithms," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 350-367, March.
    6. Kun Zhang & Ben Mingbin Feng & Guangwu Liu & Shiyu Wang, 2022. "Sample Recycling for Nested Simulation with Application in Portfolio Risk Measurement," Papers 2203.15929, arXiv.org.
    7. Dang, Ou & Feng, Mingbin & Hardy, Mary R., 2023. "Two-stage nested simulation of tail risk measurement: A likelihood ratio approach," Insurance: Mathematics and Economics, Elsevier, vol. 108(C), pages 1-24.
    8. Helin Zhu & Tianyi Liu & Enlu Zhou, 2015. "Risk Quantification in Stochastic Simulation under Input Uncertainty," Papers 1507.06015, arXiv.org, revised Dec 2017.
    9. Guangxin Jiang & L. Jeff Hong & Barry L. Nelson, 2020. "Online Risk Monitoring Using Offline Simulation," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 356-375, April.
    10. Mark Broadie & Yiping Du & Ciamac C. Moallemi, 2015. "Risk Estimation via Regression," Operations Research, INFORMS, vol. 63(5), pages 1077-1097, October.
    11. L. Jeff Hong & Sandeep Juneja & Guangwu Liu, 2017. "Kernel Smoothing for Nested Estimation with Application to Portfolio Risk Measurement," Operations Research, INFORMS, vol. 65(3), pages 657-673, June.
    12. Qiyun Pan & Eunshin Byon & Young Myoung Ko & Henry Lam, 2020. "Adaptive importance sampling for extreme quantile estimation with stochastic black box computer models," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(7), pages 524-547, October.
    13. Wen Shi & Xi Chen, 2018. "Efficient budget allocation strategies for elementary effects method in stochastic simulation," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(3), pages 218-241, April.
    14. Alessandro Gnoatto & Athena Picarelli & Christoph Reisinger, 2020. "Deep xVA solver -- A neural network based counterparty credit risk management framework," Papers 2005.02633, arXiv.org, revised Dec 2022.
    15. Saeid Delshad & Amin Khademi, 2020. "Information theory for ranking and selection," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(4), pages 239-253, June.
    16. Patrick Cheridito & John Ery & Mario V. Wüthrich, 2020. "Assessing Asset-Liability Risk with Neural Networks," Risks, MDPI, vol. 8(1), pages 1-17, February.
    17. Yoon, Moonyoung & Bekker, James, 2019. "Considering sample means in Rinott’s procedure with a Bayesian approach," European Journal of Operational Research, Elsevier, vol. 273(1), pages 249-258.
    18. Zhongshun Shi & Yijie Peng & Leyuan Shi & Chun-Hung Chen & Michael C. Fu, 2022. "Dynamic Sampling Allocation Under Finite Simulation Budget for Feasibility Determination," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 557-568, January.
    19. Cheng, Zhenxia & Luo, Jun & Wu, Ruijing, 2023. "On the finite-sample statistical validity of adaptive fully sequential procedures," European Journal of Operational Research, Elsevier, vol. 307(1), pages 266-278.
    20. Fei, Xin & Gülpınar, Nalân & Branke, Jürgen, 2019. "Efficient solution selection for two-stage stochastic programs," European Journal of Operational Research, Elsevier, vol. 277(3), pages 918-929.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:305:y:2023:i:3:p:1355-1365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.