IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v292y2021i2p443-455.html
   My bibliography  Save this article

Bi-objective parallel machine scheduling with additional resources during setups

Author

Listed:
  • Yepes-Borrero, Juan C.
  • Perea, Federico
  • Ruiz, Rubén
  • Villa, Fulgencia

Abstract

We present a bi-objective parallel machine scheduling problem with machine and job sequence dependent setup times, with the additional consideration of resources needed during setups. The availability of such resources is limited. This models many practical situations where setup times imply, for example, cleaning and/or the reconfiguration of productive equipment. These setups are performed by personnel, who are of course limited in number. The objectives considered are the minimization of the makespan and the minimization of the number of resources. Fewer available resources reduce production costs but inevitably increase the makespan. On the contrary, a greater number of resources increase costs but allow for more setups to be done in parallel and a reduced makespan. An algorithm based on iterated greedy approaches is proposed to search for the Pareto front of the problem. This algorithm is compared with state-of-the art methods adapted to the problem. Computational experiments, supported by statistical analyses, indicate that the proposed approach outperforms all other tested procedures.

Suggested Citation

  • Yepes-Borrero, Juan C. & Perea, Federico & Ruiz, Rubén & Villa, Fulgencia, 2021. "Bi-objective parallel machine scheduling with additional resources during setups," European Journal of Operational Research, Elsevier, vol. 292(2), pages 443-455.
  • Handle: RePEc:eee:ejores:v:292:y:2021:i:2:p:443-455
    DOI: 10.1016/j.ejor.2020.10.052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720309450
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.10.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Allahverdi, Ali, 2015. "The third comprehensive survey on scheduling problems with setup times/costs," European Journal of Operational Research, Elsevier, vol. 246(2), pages 345-378.
    2. Hoogeveen, Han, 2005. "Multicriteria scheduling," European Journal of Operational Research, Elsevier, vol. 167(3), pages 592-623, December.
    3. Fanjul-Peyro, Luis & Ruiz, Rubén, 2010. "Iterated greedy local search methods for unrelated parallel machine scheduling," European Journal of Operational Research, Elsevier, vol. 207(1), pages 55-69, November.
    4. Fanjul-Peyro, Luis & Perea, Federico & Ruiz, Rubén, 2017. "Models and matheuristics for the unrelated parallel machine scheduling problem with additional resources," European Journal of Operational Research, Elsevier, vol. 260(2), pages 482-493.
    5. Vallada, Eva & Ruiz, Rubén, 2011. "A genetic algorithm for the unrelated parallel machine scheduling problem with sequence dependent setup times," European Journal of Operational Research, Elsevier, vol. 211(3), pages 612-622, June.
    6. Fleszar, Krzysztof & Hindi, Khalil S., 2018. "Algorithms for the unrelated parallel machine scheduling problem with a resource constraint," European Journal of Operational Research, Elsevier, vol. 271(3), pages 839-848.
    7. Richard L. Daniels & Robert J. Chambers, 1990. "Multiobjective flow‐shop scheduling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(6), pages 981-995, December.
    8. Edis, Emrah B. & Oguz, Ceyda & Ozkarahan, Irem, 2013. "Parallel machine scheduling with additional resources: Notation, classification, models and solution methods," European Journal of Operational Research, Elsevier, vol. 230(3), pages 449-463.
    9. Ruiz, Ruben & Stutzle, Thomas, 2007. "A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 2033-2049, March.
    10. Ruiz-Torres, Alex J. & Lopez, Francisco J. & Ho, Johnny C., 2007. "Scheduling uniform parallel machines subject to a secondary resource to minimize the number of tardy jobs," European Journal of Operational Research, Elsevier, vol. 179(2), pages 302-315, June.
    11. Ciavotta, Michele & Minella, Gerardo & Ruiz, Rubén, 2013. "Multi-objective sequence dependent setup times permutation flowshop: A new algorithm and a comprehensive study," European Journal of Operational Research, Elsevier, vol. 227(2), pages 301-313.
    12. Ruiz, Rubén & Pan, Quan-Ke & Naderi, Bahman, 2019. "Iterated Greedy methods for the distributed permutation flowshop scheduling problem," Omega, Elsevier, vol. 83(C), pages 213-222.
    13. Gerardo Minella & Rubén Ruiz & Michele Ciavotta, 2008. "A Review and Evaluation of Multiobjective Algorithms for the Flowshop Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 451-471, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Julio Mar-Ortiz & Alex J. Ruiz Torres & Belarmino Adenso-Díaz, 2022. "Scheduling in parallel machines with two objectives: analysis of factors that influence the Pareto frontier," Operational Research, Springer, vol. 22(4), pages 4585-4605, September.
    2. Tao Dai & Xiangqi Fan, 2021. "Multi-Stove Scheduling for Sustainable On-Demand Food Delivery," Sustainability, MDPI, vol. 13(23), pages 1-13, November.
    3. Victor Fernandez-Viagas & Luis Sanchez-Mediano & Alvaro Angulo-Cortes & David Gomez-Medina & Jose Manuel Molina-Pariente, 2022. "The Permutation Flow Shop Scheduling Problem with Human Resources: MILP Models, Decoding Procedures, NEH-Based Heuristics, and an Iterated Greedy Algorithm," Mathematics, MDPI, vol. 10(19), pages 1-32, September.
    4. Yanıkoğlu, İhsan & Yavuz, Tonguc, 2022. "Branch-and-price approach for robust parallel machine scheduling with sequence-dependent setup times," European Journal of Operational Research, Elsevier, vol. 301(3), pages 875-895.
    5. Zhen Wang & Qianwang Deng & Like Zhang & Xiaoyan Liu, 2023. "Integrated scheduling of production, inventory and imperfect maintenance based on mutual feedback of supplier and demander in distributed environment," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3445-3467, December.
    6. Farbod Farhadi & Sina Ansari & Francisco Jara-Moroni, 2023. "Optimization models for patient and technician scheduling in hemodialysis centers," Health Care Management Science, Springer, vol. 26(3), pages 558-582, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geurtsen, M. & Didden, Jeroen B.H.C. & Adan, J. & Atan, Z. & Adan, I., 2023. "Production, maintenance and resource scheduling: A review," European Journal of Operational Research, Elsevier, vol. 305(2), pages 501-529.
    2. Zhang, Zhe & Song, Xiaoling & Huang, Huijung & Zhou, Xiaoyang & Yin, Yong, 2022. "Logic-based Benders decomposition method for the seru scheduling problem with sequence-dependent setup time and DeJong’s learning effect," European Journal of Operational Research, Elsevier, vol. 297(3), pages 866-877.
    3. Dung-Ying Lin & Tzu-Yun Huang, 2021. "A Hybrid Metaheuristic for the Unrelated Parallel Machine Scheduling Problem," Mathematics, MDPI, vol. 9(7), pages 1-20, April.
    4. Perez-Gonzalez, Paz & Framinan, Jose M., 2024. "A review and classification on distributed permutation flowshop scheduling problems," European Journal of Operational Research, Elsevier, vol. 312(1), pages 1-21.
    5. Sioud, A. & Gagné, C., 2018. "Enhanced migrating birds optimization algorithm for the permutation flow shop problem with sequence dependent setup times," European Journal of Operational Research, Elsevier, vol. 264(1), pages 66-73.
    6. Fanjul-Peyro, Luis & Perea, Federico & Ruiz, Rubén, 2017. "Models and matheuristics for the unrelated parallel machine scheduling problem with additional resources," European Journal of Operational Research, Elsevier, vol. 260(2), pages 482-493.
    7. Pablo Valledor & Alberto Gomez & Javier Puente & Isabel Fernandez, 2022. "Solving Rescheduling Problems in Dynamic Permutation Flow Shop Environments with Multiple Objectives Using the Hybrid Dynamic Non-Dominated Sorting Genetic II Algorithm," Mathematics, MDPI, vol. 10(14), pages 1-20, July.
    8. Yantong Li & Jean-François Côté & Leandro Callegari-Coelho & Peng Wu, 2022. "Novel Formulations and Logic-Based Benders Decomposition for the Integrated Parallel Machine Scheduling and Location Problem," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1048-1069, March.
    9. Victor Fernandez-Viagas & Luis Sanchez-Mediano & Alvaro Angulo-Cortes & David Gomez-Medina & Jose Manuel Molina-Pariente, 2022. "The Permutation Flow Shop Scheduling Problem with Human Resources: MILP Models, Decoding Procedures, NEH-Based Heuristics, and an Iterated Greedy Algorithm," Mathematics, MDPI, vol. 10(19), pages 1-32, September.
    10. Mecler, Davi & Abu-Marrul, Victor & Martinelli, Rafael & Hoff, Arild, 2022. "Iterated greedy algorithms for a complex parallel machine scheduling problem," European Journal of Operational Research, Elsevier, vol. 300(2), pages 545-560.
    11. Victor Abu-Marrul & Rafael Martinelli & Silvio Hamacher & Irina Gribkovskaia, 2023. "Simheuristic algorithm for a stochastic parallel machine scheduling problem with periodic re-planning assessment," Annals of Operations Research, Springer, vol. 320(2), pages 547-572, January.
    12. Jesús Isaac Vázquez-Serrano & Leopoldo Eduardo Cárdenas-Barrón & Rodrigo E. Peimbert-García, 2021. "Agent Scheduling in Unrelated Parallel Machines with Sequence- and Agent–Machine–Dependent Setup Time Problem," Mathematics, MDPI, vol. 9(22), pages 1-34, November.
    13. Wolff, Pascal & Emde, Simon & Pfohl, Hans-Christian, 2021. "Internal resource requirements: The better performance metric for truck scheduling?," Omega, Elsevier, vol. 103(C).
    14. Ana Rita Antunes & Marina A. Matos & Ana Maria A. C. Rocha & Lino A. Costa & Leonilde R. Varela, 2022. "A Statistical Comparison of Metaheuristics for Unrelated Parallel Machine Scheduling Problems with Setup Times," Mathematics, MDPI, vol. 10(14), pages 1-19, July.
    15. Ali Kordmostafapour & Javad Rezaeian & Iraj Mahdavi & Mahdi Yar Farjad, 2022. "Scheduling unrelated parallel machine problem with multi-mode processing times and batch delivery cost," OPSEARCH, Springer;Operational Research Society of India, vol. 59(4), pages 1438-1470, December.
    16. Jin Xu & Natarajan Gautam, 2020. "On competitive analysis for polling systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(6), pages 404-419, September.
    17. Jun-Ho Lee & Hyun-Jung Kim, 2021. "A heuristic algorithm for identical parallel machine scheduling: splitting jobs, sequence-dependent setup times, and limited setup operators," Flexible Services and Manufacturing Journal, Springer, vol. 33(4), pages 992-1026, December.
    18. Pagnozzi, Federico & Stützle, Thomas, 2019. "Automatic design of hybrid stochastic local search algorithms for permutation flowshop problems," European Journal of Operational Research, Elsevier, vol. 276(2), pages 409-421.
    19. Samavati, Mehran & Essam, Daryl & Nehring, Micah & Sarker, Ruhul, 2018. "A new methodology for the open-pit mine production scheduling problem," Omega, Elsevier, vol. 81(C), pages 169-182.
    20. Bentao Su & Naiming Xie & Yingjie Yang, 2021. "Hybrid genetic algorithm based on bin packing strategy for the unrelated parallel workgroup scheduling problem," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 957-969, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:292:y:2021:i:2:p:443-455. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.