IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v279y2019i1p225-241.html
   My bibliography  Save this article

Portfolio optimization with entropic value-at-risk

Author

Listed:
  • Ahmadi-Javid, Amir
  • Fallah-Tafti, Malihe

Abstract

The entropic value-at-risk (EVaR) is a new coherent risk measure, which is an upper bound for both the value-at-risk (VaR) and conditional value-at-risk (CVaR). One of the important properties of the EVaR is that it is strongly monotone over its domain and strictly monotone over a broad sub-domain including all continuous distributions, whereas well-known monotone risk measures such as the VaR and CVaR lack this property. A key feature of a risk measure, besides its financial properties, is its applicability in large-scale sample-based portfolio optimization. If the negative return of an investment portfolio is a differentiable convex function for any sampling observation, the portfolio optimization with the EVaR results in a differentiable convex program whose number of variables and constraints is independent of the sample size, which is not the case for the VaR and CVaR even if the portfolio rate linearly depends on the decision variables. This enables us to design an efficient algorithm using differentiable convex optimization. Our extensive numerical study indicates the high efficiency of the algorithm in large scales, when compared with the existing convex optimization software packages. The computational efficiency of the EVaR and CVaR approaches are generally similar, but the EVaR approach outperforms the other as the sample size increases. Moreover, the comparison of the portfolios obtained for a real case by the EVaR and CVaR approaches shows that the EVaR-based portfolios can have better best, mean, and worst return rates as well as Sharpe ratios.

Suggested Citation

  • Ahmadi-Javid, Amir & Fallah-Tafti, Malihe, 2019. "Portfolio optimization with entropic value-at-risk," European Journal of Operational Research, Elsevier, vol. 279(1), pages 225-241.
  • Handle: RePEc:eee:ejores:v:279:y:2019:i:1:p:225-241
    DOI: 10.1016/j.ejor.2019.02.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719301183
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.02.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. William F. Sharpe, 1963. "A Simplified Model for Portfolio Analysis," Management Science, INFORMS, vol. 9(2), pages 277-293, January.
    2. Silva, Thuener & Pinheiro, Plácido Rogério & Poggi, Marcus, 2017. "A more human-like portfolio optimization approach," European Journal of Operational Research, Elsevier, vol. 256(1), pages 252-260.
    3. Meryem Masmoudi & Fouad Ben Abdelaziz, 2018. "Portfolio selection problem: a review of deterministic and stochastic multiple objective programming models," Annals of Operations Research, Springer, vol. 267(1), pages 335-352, August.
    4. Churlzu Lim & Hanif Sherali & Stan Uryasev, 2010. "Portfolio optimization by minimizing conditional value-at-risk via nondifferentiable optimization," Computational Optimization and Applications, Springer, vol. 46(3), pages 391-415, July.
    5. A. Ahmadi-Javid, 2012. "Addendum to: Entropic Value-at-Risk: A New Coherent Risk Measure," Journal of Optimization Theory and Applications, Springer, vol. 155(3), pages 1124-1128, December.
    6. Alexandra Künzi-Bay & János Mayer, 2006. "Computational aspects of minimizing conditional value-at-risk," Computational Management Science, Springer, vol. 3(1), pages 3-27, January.
    7. Walter J. Gutjahr & Alois Pichler, 2016. "Stochastic multi-objective optimization: a survey on non-scalarizing methods," Annals of Operations Research, Springer, vol. 236(2), pages 475-499, January.
    8. Andrzej Ruszczyński & Alexander Shapiro, 2006. "Optimization of Convex Risk Functions," Mathematics of Operations Research, INFORMS, vol. 31(3), pages 433-452, August.
    9. Steve Zymler & Daniel Kuhn & Berç Rustem, 2013. "Worst-Case Value at Risk of Nonlinear Portfolios," Management Science, INFORMS, vol. 59(1), pages 172-188, July.
    10. Włodzimierz Ogryczak & Tomasz Śliwiński, 2011. "On solving the dual for portfolio selection by optimizing Conditional Value at Risk," Computational Optimization and Applications, Springer, vol. 50(3), pages 591-595, December.
    11. Mansini, Renata & Ogryczak, Wlodzimierz & Speranza, M. Grazia, 2014. "Twenty years of linear programming based portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 518-535.
    12. Zhang, Jinqing & Jin, Zeyu & An, Yunbi, 2017. "Dynamic portfolio optimization with ambiguity aversion," Journal of Banking & Finance, Elsevier, vol. 79(C), pages 95-109.
    13. Gasser, Stephan M. & Rammerstorfer, Margarethe & Weinmayer, Karl, 2017. "Markowitz revisited: Social portfolio engineering," European Journal of Operational Research, Elsevier, vol. 258(3), pages 1181-1190.
    14. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    15. Yuichi Takano & Keisuke Nanjo & Noriyoshi Sukegawa & Shinji Mizuno, 2015. "Cutting plane algorithms for mean-CVaR portfolio optimization with nonconvex transaction costs," Computational Management Science, Springer, vol. 12(2), pages 319-340, April.
    16. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    17. David Wozabal, 2014. "Robustifying Convex Risk Measures for Linear Portfolios: A Nonparametric Approach," Operations Research, INFORMS, vol. 62(6), pages 1302-1315, December.
    18. Cassidy, Daniel T. & Hamp, Michael J. & Ouyed, Rachid, 2010. "Pricing European options with a log Student’s t-distribution: A Gosset formula," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5736-5748.
    19. Alois Pichler, 2017. "A quantitative comparison of risk measures," Annals of Operations Research, Springer, vol. 254(1), pages 251-275, July.
    20. Bruni, Renato & Cesarone, Francesco & Scozzari, Andrea & Tardella, Fabio, 2017. "On exact and approximate stochastic dominance strategies for portfolio selection," European Journal of Operational Research, Elsevier, vol. 259(1), pages 322-329.
    21. Alexander, S. & Coleman, T.F. & Li, Y., 2006. "Minimizing CVaR and VaR for a portfolio of derivatives," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 583-605, February.
    22. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    23. Daniel Espinoza & Eduardo Moreno, 2014. "A primal-dual aggregation algorithm for minimizing conditional value-at-risk in linear programs," Computational Optimization and Applications, Springer, vol. 59(3), pages 617-638, December.
    24. A. Ahmadi-Javid, 2012. "Entropic Value-at-Risk: A New Coherent Risk Measure," Journal of Optimization Theory and Applications, Springer, vol. 155(3), pages 1105-1123, December.
    25. Thomas Breuer & Imre Csiszár, 2016. "Measuring Distribution Model Risk," Mathematical Finance, Wiley Blackwell, vol. 26(2), pages 395-411, April.
    26. Elisa Mastrogiacomo & Emanuela Rosazza Gianin, 2015. "Portfolio Optimization with Quasiconvex Risk Measures," Mathematics of Operations Research, INFORMS, vol. 40(4), pages 1042-1059, October.
    27. Xuan Vinh Doan & Xiaobo Li & Karthik Natarajan, 2015. "Robustness to Dependency in Portfolio Optimization Using Overlapping Marginals," Operations Research, INFORMS, vol. 63(6), pages 1468-1488, December.
    28. Daniel Ralph & Stephen J. Wright, 2000. "Superlinear Convergence of an Interior-Point Method Despite Dependent Constraints," Mathematics of Operations Research, INFORMS, vol. 25(2), pages 179-194, May.
    29. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    30. Walter Gutjahr & Alois Pichler, 2016. "Stochastic multi-objective optimization: a survey on non-scalarizing methods," Annals of Operations Research, Springer, vol. 236(2), pages 475-499, January.
    31. Garud Iyengar & Alfred Ma, 2013. "Fast gradient descent method for Mean-CVaR optimization," Annals of Operations Research, Springer, vol. 205(1), pages 203-212, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed, Dilan & Soleymani, Fazlollah & Ullah, Malik Zaka & Hasan, Hataw, 2021. "Managing the risk based on entropic value-at-risk under a normal-Rayleigh distribution," Applied Mathematics and Computation, Elsevier, vol. 402(C).
    2. Jianming Xia, 2023. "Benchmark Beating with the Increasing Convex Order," Papers 2311.01692, arXiv.org.
    3. Fan, Qi & Tan, Ken Seng & Zhang, Jinggong, 2023. "Empirical tail risk management with model-based annealing random search," Insurance: Mathematics and Economics, Elsevier, vol. 110(C), pages 106-124.
    4. Trindade, Marco A.S. & Floquet, Sergio & Filho, Lourival M. Silva, 2020. "Portfolio theory, information theory and Tsallis statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    5. Bernard, C. & De Gennaro Aquino, L. & Vanduffel, S., 2023. "Optimal multivariate financial decision making," European Journal of Operational Research, Elsevier, vol. 307(1), pages 468-483.
    6. J. Arismendi-Zambrano & R. Azevedo, 2020. "Implicit Entropic Market Risk-Premium from Interest Rate Derivatives," Economics Department Working Paper Series n303-20.pdf, Department of Economics, National University of Ireland - Maynooth.
    7. Kirkby, J. Lars & Mitra, Sovan & Nguyen, Duy, 2020. "An analysis of dollar cost averaging and market timing investment strategies," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1168-1186.
    8. Man Yiu Tsang & Tony Sit & Hoi Ying Wong, 2022. "Adaptive Robust Online Portfolio Selection," Papers 2206.01064, arXiv.org.
    9. Sahamkhadam, Maziar & Stephan, Andreas & Östermark, Ralf, 2022. "Copula-based Black–Litterman portfolio optimization," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1055-1070.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amir Ahmadi-Javid & Malihe Fallah-Tafti, 2017. "Portfolio Optimization with Entropic Value-at-Risk," Papers 1708.05713, arXiv.org.
    2. Ken Kobayashi & Yuichi Takano & Kazuhide Nakata, 2021. "Bilevel cutting-plane algorithm for cardinality-constrained mean-CVaR portfolio optimization," Journal of Global Optimization, Springer, vol. 81(2), pages 493-528, October.
    3. L. Jeff Hong & Zhaolin Hu & Liwei Zhang, 2014. "Conditional Value-at-Risk Approximation to Value-at-Risk Constrained Programs: A Remedy via Monte Carlo," INFORMS Journal on Computing, INFORMS, vol. 26(2), pages 385-400, May.
    4. Daniel Espinoza & Eduardo Moreno, 2014. "A primal-dual aggregation algorithm for minimizing conditional value-at-risk in linear programs," Computational Optimization and Applications, Springer, vol. 59(3), pages 617-638, December.
    5. Yuichi Takano & Keisuke Nanjo & Noriyoshi Sukegawa & Shinji Mizuno, 2015. "Cutting plane algorithms for mean-CVaR portfolio optimization with nonconvex transaction costs," Computational Management Science, Springer, vol. 12(2), pages 319-340, April.
    6. Ahmadi-Javid, Amir & Seddighi, Amir Hossein, 2013. "A location-routing problem with disruption risk," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 53(C), pages 63-82.
    7. Mansini, Renata & Ogryczak, Wlodzimierz & Speranza, M. Grazia, 2014. "Twenty years of linear programming based portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 518-535.
    8. Maciej Rysz & Alexander Vinel & Pavlo Krokhmal & Eduardo L. Pasiliao, 2015. "A Scenario Decomposition Algorithm for Stochastic Programming Problems with a Class of Downside Risk Measures," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 416-430, May.
    9. Takano, Yuichi & Gotoh, Jun-ya, 2023. "Dynamic portfolio selection with linear control policies for coherent risk minimization," Operations Research Perspectives, Elsevier, vol. 10(C).
    10. González-Díaz, Julio & González-Rodríguez, Brais & Leal, Marina & Puerto, Justo, 2021. "Global optimization for bilevel portfolio design: Economic insights from the Dow Jones index," Omega, Elsevier, vol. 102(C).
    11. Jakobsons Edgars, 2016. "Scenario aggregation method for portfolio expectile optimization," Statistics & Risk Modeling, De Gruyter, vol. 33(1-2), pages 51-65, September.
    12. Ramponi, Federico Alessandro & Campi, Marco C., 2018. "Expected shortfall: Heuristics and certificates," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1003-1013.
    13. Cui, Xueting & Zhu, Shushang & Sun, Xiaoling & Li, Duan, 2013. "Nonlinear portfolio selection using approximate parametric Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2124-2139.
    14. Rad, Hossein & Low, Rand Kwong Yew & Miffre, Joëlle & Faff, Robert, 2020. "Does sophistication of the weighting scheme enhance the performance of long-short commodity portfolios?," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 164-180.
    15. Hsieh, Chung-Chi & Lu, Yu-Ting, 2010. "Manufacturer's return policy in a two-stage supply chain with two risk-averse retailers and random demand," European Journal of Operational Research, Elsevier, vol. 207(1), pages 514-523, November.
    16. Soleimani, Hamed & Govindan, Kannan, 2014. "Reverse logistics network design and planning utilizing conditional value at risk," European Journal of Operational Research, Elsevier, vol. 237(2), pages 487-497.
    17. Marcelo Brutti Righi & Paulo Sergio Ceretta, 2015. "Shortfall Deviation Risk: An alternative to risk measurement," Papers 1501.02007, arXiv.org, revised May 2016.
    18. Lwin, Khin T. & Qu, Rong & MacCarthy, Bart L., 2017. "Mean-VaR portfolio optimization: A nonparametric approach," European Journal of Operational Research, Elsevier, vol. 260(2), pages 751-766.
    19. Lagos, Guido & Espinoza, Daniel & Moreno, Eduardo & Vielma, Juan Pablo, 2015. "Restricted risk measures and robust optimization," European Journal of Operational Research, Elsevier, vol. 241(3), pages 771-782.
    20. Helin Zhu & Joshua Hale & Enlu Zhou, 2018. "Simulation optimization of risk measures with adaptive risk levels," Journal of Global Optimization, Springer, vol. 70(4), pages 783-809, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:279:y:2019:i:1:p:225-241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.