IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v261y2017i2p690-703.html
   My bibliography  Save this article

Dominance-based rough fuzzy set approach and its application to rule induction

Author

Listed:
  • Du, Wen Sheng
  • Hu, Bao Qing

Abstract

Theories of fuzzy sets and rough sets are related and complementary methodologies to handle uncertainty of vagueness and coarseness, respectively. Marrying both leads to the hybrid notion of rough fuzzy sets in order to get a more accurate account of imperfect information. In this paper, our attention is paid to ordered fuzzy decision systems, where condition criteria are preference-ordered and decision classes are not only ordered but also fuzzy. First, the dominance-based rough fuzzy approximations of an upward or downward cumulated fuzzy set are introduced in ordered fuzzy decision systems. Second, lower and upper reducts relative to a certain cumulated fuzzy set are proposed to eliminate redundant criteria in the system. Then, two approaches to attribute reduction are presented based on the discernibility matrix and the heuristic strategy, respectively. Also, decision rules are extracted directly from these approximations and some applicable and simplified decision rules are obtained according to requirements of decision makers. Finally, a case study in bankruptcy risk analysis is used to illustrate the mechanism of the proposed methods.

Suggested Citation

  • Du, Wen Sheng & Hu, Bao Qing, 2017. "Dominance-based rough fuzzy set approach and its application to rule induction," European Journal of Operational Research, Elsevier, vol. 261(2), pages 690-703.
  • Handle: RePEc:eee:ejores:v:261:y:2017:i:2:p:690-703
    DOI: 10.1016/j.ejor.2016.12.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221716310232
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.12.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Salvatore Greco & Benedetto Matarazzo & Roman Słowiński, 2016. "Decision Rule Approach," International Series in Operations Research & Management Science, in: Salvatore Greco & Matthias Ehrgott & José Rui Figueira (ed.), Multiple Criteria Decision Analysis, edition 2, chapter 0, pages 497-552, Springer.
    2. R. Slowinski & C. Zopounidis, 1995. "Application of the Rough Set Approach to Evaluation of Bankruptcy Risk," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 4(1), pages 27-41, March.
    3. Yao, Yiyu & Zhou, Bing, 2016. "Two Bayesian approaches to rough sets," European Journal of Operational Research, Elsevier, vol. 251(3), pages 904-917.
    4. Yuan Li & Xiuwu Liao & Wenhong Zhao, 2009. "A rough set approach to knowledge discovery in analyzing competitive advantages of firms," Annals of Operations Research, Springer, vol. 168(1), pages 205-223, April.
    5. Huang, Bing & Zhuang, Yu-liang & Li, Hua-xiong, 2013. "Information granulation and uncertainty measures in interval-valued intuitionistic fuzzy information systems," European Journal of Operational Research, Elsevier, vol. 231(1), pages 162-170.
    6. Salvatore Greco & Benedetto Matarazzo & Roman Slowinski & Stelios Zanakis, 2011. "Global investing risk: a case study of knowledge assessment via rough sets," Annals of Operations Research, Springer, vol. 185(1), pages 105-138, May.
    7. Blaszczynski, Jerzy & Greco, Salvatore & Slowinski, Roman, 2007. "Multi-criteria classification - A new scheme for application of dominance-based decision rules," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1030-1044, September.
    8. Greco, Salvatore & Matarazzo, Benedetto & Slowinski, Roman, 2001. "Rough sets theory for multicriteria decision analysis," European Journal of Operational Research, Elsevier, vol. 129(1), pages 1-47, February.
    9. Greco, Salvatore & Matarazzo, Benedetto & Slowinski, Roman, 1999. "Rough approximation of a preference relation by dominance relations," European Journal of Operational Research, Elsevier, vol. 117(1), pages 63-83, August.
    10. Roman Słowiński & Salvatore Greco & Benedetto Matarazzo, 2014. "Rough-Set-Based Decision Support," Springer Books, in: Edmund K. Burke & Graham Kendall (ed.), Search Methodologies, edition 2, chapter 0, pages 557-609, Springer.
    11. Dembczynski, Krzysztof & Greco, Salvatore & Slowinski, Roman, 2009. "Rough set approach to multiple criteria classification with imprecise evaluations and assignments," European Journal of Operational Research, Elsevier, vol. 198(2), pages 626-636, October.
    12. Fan, Tuan-Fang & Liau, Churn-Jung & Liu, Duen-Ren, 2011. "A relational perspective of attribute reduction in rough set-based data analysis," European Journal of Operational Research, Elsevier, vol. 213(1), pages 270-278, August.
    13. Fan, Tuan-Fang & Liu, Duen-Ren & Tzeng, Gwo-Hshiung, 2007. "Rough set-based logics for multicriteria decision analysis," European Journal of Operational Research, Elsevier, vol. 182(1), pages 340-355, October.
    14. Salvatore Greco & Benedetto Matarazzo & Roman Słowiński, 2010. "Dominance-based Rough Set Approach to decision under uncertainty and time preference," Annals of Operations Research, Springer, vol. 176(1), pages 41-75, April.
    15. Greco, Salvatore & Matarazzo, Benedetto & Slowinski, Roman, 2002. "Rough sets methodology for sorting problems in presence of multiple attributes and criteria," European Journal of Operational Research, Elsevier, vol. 138(2), pages 247-259, April.
    16. Chakhar, Salem & Ishizaka, Alessio & Labib, Ashraf & Saad, Inès, 2016. "Dominance-based rough set approach for group decisions," European Journal of Operational Research, Elsevier, vol. 251(1), pages 206-224.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiying Zhang & Huchang Liao & Jiaying Chang & Abdullah Al-barakati, 2019. "Green-Building-Material Supplier Selection with a Rough-Set-Enhanced Quality Function Deployment," Sustainability, MDPI, vol. 11(24), pages 1-21, December.
    2. Huang, Bing & Li, Huaxiong & Feng, Guofu & Zhou, Xianzhong, 2019. "Dominance-based rough sets in multi-scale intuitionistic fuzzy decision tables," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 487-512.
    3. Abbas Mardani & Mehrbakhsh Nilashi & Jurgita Antucheviciene & Madjid Tavana & Romualdas Bausys & Othman Ibrahim, 2017. "Recent Fuzzy Generalisations of Rough Sets Theory: A Systematic Review and Methodological Critique of the Literature," Complexity, Hindawi, vol. 2017, pages 1-33, October.
    4. Du, Wen Sheng & Hu, Bao Qing, 2018. "A fast heuristic attribute reduction approach to ordered decision systems," European Journal of Operational Research, Elsevier, vol. 264(2), pages 440-452.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Wen Sheng & Hu, Bao Qing, 2018. "A fast heuristic attribute reduction approach to ordered decision systems," European Journal of Operational Research, Elsevier, vol. 264(2), pages 440-452.
    2. Fu-Ling Cai & Xiuwu Liao & Kan-Liang Wang, 2012. "An interactive sorting approach based on the assignment examples of multiple decision makers with different priorities," Annals of Operations Research, Springer, vol. 197(1), pages 87-108, August.
    3. Azam, Nouman & Zhang, Yan & Yao, JingTao, 2017. "Evaluation functions and decision conditions of three-way decisions with game-theoretic rough sets," European Journal of Operational Research, Elsevier, vol. 261(2), pages 704-714.
    4. Abbas Mardani & Mehrbakhsh Nilashi & Jurgita Antucheviciene & Madjid Tavana & Romualdas Bausys & Othman Ibrahim, 2017. "Recent Fuzzy Generalisations of Rough Sets Theory: A Systematic Review and Methodological Critique of the Literature," Complexity, Hindawi, vol. 2017, pages 1-33, October.
    5. Sarah Ben Amor & Fateh Belaid & Ramzi Benkraiem & Boumediene Ramdani & Khaled Guesmi, 2023. "Multi-criteria classification, sorting, and clustering: a bibliometric review and research agenda," Annals of Operations Research, Springer, vol. 325(2), pages 771-793, June.
    6. Kao-Yi Shen, 2017. "Compromise between Short- and Long-Term Financial Sustainability: A Hybrid Model for Supporting R&D Decisions," Sustainability, MDPI, vol. 9(3), pages 1-17, March.
    7. Barbati, Maria & Corrente, Salvatore & Greco, Salvatore, 2020. "A general space-time model for combinatorial optimization problems (and not only)," Omega, Elsevier, vol. 96(C).
    8. Wen-Min Lu & Qian Long Kweh & Chung-Wei Wang, 2021. "Integration and application of rough sets and data envelopment analysis for assessments of the investment trusts industry," Annals of Operations Research, Springer, vol. 296(1), pages 163-194, January.
    9. Julio Cezar Soares Silva & Diogo Ferreira de Lima Silva & Luciano Ferreira & Adiel Teixeira de Almeida-Filho, 2022. "A dominance-based rough set approach applied to evaluate the credit risk of sovereign bonds," 4OR, Springer, vol. 20(1), pages 139-164, March.
    10. Barbati, Maria & Greco, Salvatore & Kadziński, Miłosz & Słowiński, Roman, 2018. "Optimization of multiple satisfaction levels in portfolio decision analysis," Omega, Elsevier, vol. 78(C), pages 192-204.
    11. Fan, Tuan-Fang & Liau, Churn-Jung & Liu, Duen-Ren, 2011. "A relational perspective of attribute reduction in rough set-based data analysis," European Journal of Operational Research, Elsevier, vol. 213(1), pages 270-278, August.
    12. Nejc Trdin & Marko Bohanec, 2018. "Extending the multi-criteria decision making method DEX with numeric attributes, value distributions and relational models," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(1), pages 1-41, March.
    13. Wang, Hailiang & Zhou, Mingtian & She, Kun, 2015. "Induction of ordinal classification rules from decision tables with unknown monotonicity," European Journal of Operational Research, Elsevier, vol. 242(1), pages 172-181.
    14. Bouyssou, Denis & Marchant, Thierry, 2007. "An axiomatic approach to noncompensatory sorting methods in MCDM, II: More than two categories," European Journal of Operational Research, Elsevier, vol. 178(1), pages 246-276, April.
    15. Hu, Qiwei & Chakhar, Salem & Siraj, Sajid & Labib, Ashraf, 2017. "Spare parts classification in industrial manufacturing using the dominance-based rough set approach," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1136-1163.
    16. Oppio, Alessandra & Dell’Ovo, Marta & Torrieri, Francesca & Miebs, Grzegorz & Kadziński, Miłosz, 2020. "Understanding the drivers of Urban Development Agreements with the rough set approach and robust decision rules," Land Use Policy, Elsevier, vol. 96(C).
    17. Zopounidis, Constantin & Doumpos, Michael, 2002. "Multicriteria classification and sorting methods: A literature review," European Journal of Operational Research, Elsevier, vol. 138(2), pages 229-246, April.
    18. Fernandez, Eduardo & Navarro, Jorge & Bernal, Sergio, 2009. "Multicriteria sorting using a valued indifference relation under a preference disaggregation paradigm," European Journal of Operational Research, Elsevier, vol. 198(2), pages 602-609, October.
    19. Dembczynski, Krzysztof & Greco, Salvatore & Slowinski, Roman, 2009. "Rough set approach to multiple criteria classification with imprecise evaluations and assignments," European Journal of Operational Research, Elsevier, vol. 198(2), pages 626-636, October.
    20. Wu, Siqi & Wu, Meng & Dong, Yucheng & Liang, Haiming & Zhao, Sihai, 2020. "The 2-rank additive model with axiomatic design in multiple attribute decision making," European Journal of Operational Research, Elsevier, vol. 287(2), pages 536-545.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:261:y:2017:i:2:p:690-703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.