IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v245y2015i2p360-370.html
   My bibliography  Save this article

A MILP formulation for generalized geometric programming using piecewise-linear approximations

Author

Listed:
  • Tseng, Chung-Li
  • Zhan, Yiduo
  • Zheng, Qipeng P.
  • Kumar, Manish

Abstract

Generalized geometric programming (GGP) problems are converted to mixed-integer linear programming (MILP) problems using piecewise-linear approximations. Our approach is to approximate a multiple-term log-sum function of the form log (x1 + x2 + ⋅⋅⋅ + xn) in terms of a set of linear equalities or inequalities of log x1, log x2, …, and log xn, where x1, …, xn are strictly positive. The advantage of this approach is its simplicity and readiness to implement and solve using commercial MILP solvers. While MILP problems in general are no easier than GGP problems, this approach is justified by the phenomenal progress of computing power of both personal computers and commercial MILP solvers. The limitation of this approach is discussed along with numerical tests.

Suggested Citation

  • Tseng, Chung-Li & Zhan, Yiduo & Zheng, Qipeng P. & Kumar, Manish, 2015. "A MILP formulation for generalized geometric programming using piecewise-linear approximations," European Journal of Operational Research, Elsevier, vol. 245(2), pages 360-370.
  • Handle: RePEc:eee:ejores:v:245:y:2015:i:2:p:360-370
    DOI: 10.1016/j.ejor.2015.01.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715000582
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.01.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Han-Lin Li & Hao-Chun Lu, 2009. "Global Optimization for Generalized Geometric Programs with Mixed Free-Sign Variables," Operations Research, INFORMS, vol. 57(3), pages 701-713, June.
    2. Xu, Gongxian, 2014. "Global optimization of signomial geometric programming problems," European Journal of Operational Research, Elsevier, vol. 233(3), pages 500-510.
    3. Tsai, Jung-Fa & Lin, Ming-Hua & Hu, Yi-Chung, 2007. "On generalized geometric programming problems with non-positive variables," European Journal of Operational Research, Elsevier, vol. 178(1), pages 10-19, April.
    4. Qu, Shaojian & Zhang, Kecun & Wang, Fusheng, 2008. "A global optimization using linear relaxation for generalized geometric programming," European Journal of Operational Research, Elsevier, vol. 190(2), pages 345-356, October.
    5. Lin, Ming-Hua & Tsai, Jung-Fa, 2012. "Range reduction techniques for improving computational efficiency in global optimization of signomial geometric programming problems," European Journal of Operational Research, Elsevier, vol. 216(1), pages 17-25.
    6. Peiping Shen & Xiaoai Li, 2013. "Branch-reduction-bound algorithm for generalized geometric programming," Journal of Global Optimization, Springer, vol. 56(3), pages 1123-1142, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yiduo Zhan & Qipeng P. Zheng & Chung-Li Tseng & Eduardo L. Pasiliao, 2018. "An accelerated extended cutting plane approach with piecewise linear approximations for signomial geometric programming," Journal of Global Optimization, Springer, vol. 70(3), pages 579-599, March.
    2. Shen, Peiping & Zhu, Zeyi & Chen, Xiao, 2019. "A practicable contraction approach for the sum of the generalized polynomial ratios problem," European Journal of Operational Research, Elsevier, vol. 278(1), pages 36-48.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yiduo Zhan & Qipeng P. Zheng & Chung-Li Tseng & Eduardo L. Pasiliao, 2018. "An accelerated extended cutting plane approach with piecewise linear approximations for signomial geometric programming," Journal of Global Optimization, Springer, vol. 70(3), pages 579-599, March.
    2. Shen, Peiping & Zhu, Zeyi & Chen, Xiao, 2019. "A practicable contraction approach for the sum of the generalized polynomial ratios problem," European Journal of Operational Research, Elsevier, vol. 278(1), pages 36-48.
    3. Xu, Gongxian, 2014. "Global optimization of signomial geometric programming problems," European Journal of Operational Research, Elsevier, vol. 233(3), pages 500-510.
    4. Jiao, Hongwei & Liu, Sanyang & Lu, Nan, 2015. "A parametric linear relaxation algorithm for globally solving nonconvex quadratic programming," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 973-985.
    5. Lu, Hao-Chun, 2020. "Indicator of power convex and exponential transformations for solving nonlinear problems containing posynomial terms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    6. Armin Jabbarzadeh & Leyla Aliabadi & Reza Yazdanparast, 2021. "Optimal payment time and replenishment decisions for retailer’s inventory system under trade credit and carbon emission constraints," Operational Research, Springer, vol. 21(1), pages 589-620, March.
    7. Wasim Akram Mandal, 2021. "Weighted Tchebycheff Optimization Technique Under Uncertainty," Annals of Data Science, Springer, vol. 8(4), pages 709-731, December.
    8. Lin, Ming-Hua & Tsai, Jung-Fa, 2012. "Range reduction techniques for improving computational efficiency in global optimization of signomial geometric programming problems," European Journal of Operational Research, Elsevier, vol. 216(1), pages 17-25.
    9. Rashed Khanjani Shiraz & Hirofumi Fukuyama, 2018. "Integrating geometric programming with rough set theory," Operational Research, Springer, vol. 18(1), pages 1-32, April.
    10. Rashed Khanjani Shiraz & Madjid Tavana & Debora Di Caprio & Hirofumi Fukuyama, 2016. "Solving Geometric Programming Problems with Normal, Linear and Zigzag Uncertainty Distributions," Journal of Optimization Theory and Applications, Springer, vol. 170(1), pages 243-265, July.
    11. Hao-Chun Lu & Liming Yao, 2019. "Efficient Convexification Strategy for Generalized Geometric Programming Problems," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 226-234, April.
    12. Peiping Shen & Kaimin Wang & Ting Lu, 2020. "Outer space branch and bound algorithm for solving linear multiplicative programming problems," Journal of Global Optimization, Springer, vol. 78(3), pages 453-482, November.
    13. Han-Lin Li & Yao-Huei Huang & Shu-Cherng Fang, 2017. "Linear Reformulation of Polynomial Discrete Programming for Fast Computation," INFORMS Journal on Computing, INFORMS, vol. 29(1), pages 108-122, February.
    14. Ying Ji & Mark Goh & Robert Souza, 2016. "Proximal Point Algorithms for Multi-criteria Optimization with the Difference of Convex Objective Functions," Journal of Optimization Theory and Applications, Springer, vol. 169(1), pages 280-289, April.
    15. Warren P. Adams & Stephen M. Henry, 2012. "Base-2 Expansions for Linearizing Products of Functions of Discrete Variables," Operations Research, INFORMS, vol. 60(6), pages 1477-1490, December.
    16. Peiping Shen & Xiaoai Li, 2013. "Branch-reduction-bound algorithm for generalized geometric programming," Journal of Global Optimization, Springer, vol. 56(3), pages 1123-1142, July.
    17. Liu, Haoxiang & Wang, David Z.W., 2015. "Global optimization method for network design problem with stochastic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 20-39.
    18. Rashed Khanjani Shiraz & Madjid Tavana & Hirofumi Fukuyama & Debora Di Caprio, 2017. "Fuzzy chance-constrained geometric programming: the possibility, necessity and credibility approaches," Operational Research, Springer, vol. 17(1), pages 67-97, April.
    19. Rashed Khanjani-Shiraz & Salman Khodayifar & Panos M. Pardalos, 2021. "Copula theory approach to stochastic geometric programming," Journal of Global Optimization, Springer, vol. 81(2), pages 435-468, October.
    20. Han-Lin Li & Yao-Huei Huang & Shu-Cherng Fang, 2013. "A Logarithmic Method for Reducing Binary Variables and Inequality Constraints in Solving Task Assignment Problems," INFORMS Journal on Computing, INFORMS, vol. 25(4), pages 643-653, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:245:y:2015:i:2:p:360-370. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.