IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v242y2015i2p477-486.html
   My bibliography  Save this article

Which is better for replacement policies with continuous or discrete scheduled times?

Author

Listed:
  • Zhao, Xufeng
  • Mizutani, Satoshi
  • Nakagawa, Toshio

Abstract

In order to maintain a unit that is running successive works with cycle times, this paper classifies its replacement policies into three types: (Type I) Replacement with interrupted cycles; (Type II) replacement with complete works; and (Type III) replacement with incomplete works. Type I is typically done at a continuous time T while Type II is executed at a discrete number N of working cycles. Type III is proposed as an improvement of Type I, which can be done at discrete working cycles. For each type, age and periodic replacement models are respectively observed. It is shown that Type I is more flexible than Type II and costs less than Type III. However, modified replacement costs, i.e., without penalty of operational interruptions, are obtained for Types II and III as critical points at which their policies should be adopted. All discussions are presented analytically and numerical examples are given when each cycle time is exponential and the failure time has a Weibull distribution.

Suggested Citation

  • Zhao, Xufeng & Mizutani, Satoshi & Nakagawa, Toshio, 2015. "Which is better for replacement policies with continuous or discrete scheduled times?," European Journal of Operational Research, Elsevier, vol. 242(2), pages 477-486.
  • Handle: RePEc:eee:ejores:v:242:y:2015:i:2:p:477-486
    DOI: 10.1016/j.ejor.2014.11.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714009229
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.11.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Shaomin & Clements-Croome, Derek, 2005. "Preventive maintenance models with random maintenance quality," Reliability Engineering and System Safety, Elsevier, vol. 90(1), pages 99-105.
    2. Shey-Huei Sheu & Suh-Huey Li & Chin-Chih Chang, 2012. "A generalised maintenance policy with age-dependent minimal repair cost for a system subject to shocks under periodic overhaul," International Journal of Systems Science, Taylor & Francis Journals, vol. 43(6), pages 1007-1013.
    3. Wang, Hongzhou, 2002. "A survey of maintenance policies of deteriorating systems," European Journal of Operational Research, Elsevier, vol. 139(3), pages 469-489, June.
    4. Zhang, Yuan Lin, 2007. "A discussion on "A bivariate optimal replacement policy for a repairable system"," European Journal of Operational Research, Elsevier, vol. 179(1), pages 275-276, May.
    5. Wang, Wenbin, 2012. "An overview of the recent advances in delay-time-based maintenance modelling," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 165-178.
    6. Shafiee, Mahmood & Chukova, Stefanka, 2013. "Maintenance models in warranty: A literature review," European Journal of Operational Research, Elsevier, vol. 229(3), pages 561-572.
    7. Zhao, Xufeng & Nakagawa, Toshio, 2012. "Optimization problems of replacement first or last in reliability theory," European Journal of Operational Research, Elsevier, vol. 223(1), pages 141-149.
    8. Zhang, Yuan Lin & Yam, Richard C.M. & Zuo, Ming J., 2007. "A bivariate optimal replacement policy for a multistate repairable system," Reliability Engineering and System Safety, Elsevier, vol. 92(4), pages 535-542.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Berrade, M.D. & Scarf, P.A. & Cavalcante, C.A.V., 2017. "A study of postponed replacement in a delay time model," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 70-79.
    2. de Jonge, Bram & Jakobsons, Edgars, 2018. "Optimizing block-based maintenance under random machine usage," European Journal of Operational Research, Elsevier, vol. 265(2), pages 703-709.
    3. Eryilmaz, Serkan, 2021. "Revisiting discrete time age replacement policy for phase-type lifetime distributions," European Journal of Operational Research, Elsevier, vol. 295(2), pages 699-704.
    4. Mingjuan Sun & Qinglai Dong & Zihan Gao, 2022. "An Imperfect Repair Model with Delayed Repair under Replacement and Repair Thresholds," Mathematics, MDPI, vol. 10(13), pages 1-15, June.
    5. Zhao, Xufeng & Qian, Cunhua & Nakagawa, Toshio, 2017. "Comparisons of replacement policies with periodic times and repair numbers," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 161-170.
    6. Zhang, Nan & Fouladirad, Mitra & Barros, Anne & Zhang, Jun, 2020. "Condition-based maintenance for a K-out-of-N deteriorating system under periodic inspection with failure dependence," European Journal of Operational Research, Elsevier, vol. 287(1), pages 159-167.
    7. Félix Belzunce & Carolina Martínez-Riquelme & José A. Mercader & José M. Ruiz, 2021. "Comparisons of policies based on relevation and replacement by a new one unit in reliability," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 211-227, March.
    8. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    9. Briš, Radim & Byczanski, Petr & Goňo, Radomír & Rusek, Stanislav, 2017. "Discrete maintenance optimization of complex multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 80-89.
    10. Serkan Eryilmaz & Fatih Tank, 2023. "Optimal age replacement policy for discrete time parallel systems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 475-490, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Xufeng & Liu, Hu-Chen & Nakagawa, Toshio, 2015. "Where does “whichever occurs first†hold for preventive maintenance modelings?," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 203-211.
    2. Sheu, Shey-Huei & Liu, Tzu-Hsin & Zhang, Zhe-George & Tsai, Hsin-Nan, 2018. "The generalized age maintenance policies with random working times," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 503-514.
    3. Sheu, Shey-Huei & Liu, Tzu-Hsin & Zhang, Zhe-George, 2019. "Extended optimal preventive replacement policies with random working cycle," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 398-415.
    4. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    5. Coria, V.H. & Maximov, S. & Rivas-Dávalos, F. & Melchor, C.L. & Guardado, J.L., 2015. "Analytical method for optimization of maintenance policy based on available system failure data," Reliability Engineering and System Safety, Elsevier, vol. 135(C), pages 55-63.
    6. Ammar Y. Alqahtani & Surendra M. Gupta, 2017. "One-Dimensional Renewable Warranty Management within Sustainable Supply Chain," Resources, MDPI, vol. 6(2), pages 1-26, April.
    7. Azadegan, Arash & Modi, Sachin & Lucianetti, Lorenzo, 2021. "Surprising supply chain disruptions: Mitigation effects of operational slack and supply redundancy," International Journal of Production Economics, Elsevier, vol. 240(C).
    8. Liu, Bin & Wu, Jun & Xie, Min, 2015. "Cost analysis for multi-component system with failure interaction under renewing free-replacement warranty," European Journal of Operational Research, Elsevier, vol. 243(3), pages 874-882.
    9. Levitin, Gregory & Finkelstein, Maxim & Huang, Hong-Zhong, 2019. "Scheduling of imperfect inspections for reliability critical systems with shock-driven defects and delayed failures," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 89-98.
    10. Wu, Shaomin & Longhurst, Phil, 2011. "Optimising age-replacement and extended non-renewing warranty policies in lifecycle costing," International Journal of Production Economics, Elsevier, vol. 130(2), pages 262-267, April.
    11. Hamidi, Maryam & Szidarovszky, Ferenc & Szidarovszky, Miklos, 2016. "New one cycle criteria for optimizing preventive replacement policies," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 42-48.
    12. Berrade, M.D. & Scarf, P.A. & Cavalcante, C.A.V., 2018. "Conditional inspection and maintenance of a system with two interacting components," European Journal of Operational Research, Elsevier, vol. 268(2), pages 533-544.
    13. Insua, David Rios & Ruggeri, Fabrizio & Soyer, Refik & Wilson, Simon, 2020. "Advances in Bayesian decision making in reliability," European Journal of Operational Research, Elsevier, vol. 282(1), pages 1-18.
    14. Chien, Yu-Hung & Zhang, Zhe George & Yin, Xiaoling, 2019. "On optimal preventive-maintenance policy for generalized Polya process repairable products under free-repair warranty," European Journal of Operational Research, Elsevier, vol. 279(1), pages 68-78.
    15. Zitrou, A. & Bedford, T. & Daneshkhah, A., 2013. "Robustness of maintenance decisions: Uncertainty modelling and value of information," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 60-71.
    16. Yang, Li & Ma, Xiaobing & Zhai, Qingqing & Zhao, Yu, 2016. "A delay time model for a mission-based system subject to periodic and random inspection and postponed replacement," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 96-104.
    17. Toledo, Maria Luíza Guerra de & Freitas, Marta A. & Colosimo, Enrico A. & Gilardoni, Gustavo L., 2015. "ARA and ARI imperfect repair models: Estimation, goodness-of-fit and reliability prediction," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 107-115.
    18. Shang, Lijun & Liu, Baoliang & Qiu, Qingan & Yang, Li, 2023. "Three-dimensional warranty and post-warranty maintenance of products with monitored mission cycles," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    19. Junyuan Wang & Jimin Ye, 2022. "A new repair model and its optimization for cold standby system," Operational Research, Springer, vol. 22(1), pages 105-122, March.
    20. Seyedhosseini, Seyed Mohammad & Moakedi, Hamid & Shahanaghi, Kamran, 2018. "Imperfect inspection optimization for a two-component system subject to hidden and two-stage revealed failures over a finite time horizon," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 141-156.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:242:y:2015:i:2:p:477-486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.