Advanced Search
MyIDEAS: Login to save this article or follow this journal

A degradation path-dependent approach for remaining useful life estimation with an exact and closed-form solution

Contents:

Author Info

  • Si, Xiao-Sheng
  • Wang, Wenbin
  • Chen, Mao-Yin
  • Hu, Chang-Hua
  • Zhou, Dong-Hua
Registered author(s):

    Abstract

    Remaining useful life (RUL) estimation is regarded as one of the most central components in prognostics and health management (PHM). Accurate RUL estimation can enable failure prevention in a more controllable manner in that effective maintenance can be executed in appropriate time to correct impending faults. In this paper we consider the problem of estimating the RUL from observed degradation data for a general system. A degradation path-dependent approach for RUL estimation is presented through the combination of Bayesian updating and expectation maximization (EM) algorithm. The use of both Bayesian updating and EM algorithm to update the model parameters and RUL distribution at the time obtaining a newly observed data is a novel contribution of this paper, which makes the estimated RUL depend on the observed degradation data history. As two specific cases, a linear degradation model and an exponential-based degradation model are considered to illustrate the implementation of our presented approach. A major contribution under these two special cases is that our approach can obtain an exact and closed-form RUL distribution respectively, and the moment of the obtained RUL distribution from our presented approach exists. This contrasts sharply with the approximated results obtained in the literature for the same cases. To our knowledge, the RUL estimation approach presented in this paper for the two special cases is the only one that can provide an exact and closed-form RUL distribution utilizing the monitoring history. Finally, numerical examples for RUL estimation and a practical case study for condition-based replacement decision making with comparison to a previously reported approach are provided to substantiate the superiority of the proposed model.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/pii/S0377221712007953
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal European Journal of Operational Research.

    Volume (Year): 226 (2013)
    Issue (Month): 1 ()
    Pages: 53-66

    as in new window
    Handle: RePEc:eee:ejores:v:226:y:2013:i:1:p:53-66

    Contact details of provider:
    Web page: http://www.elsevier.com/locate/eor

    Related research

    Keywords: Replacement; Remaining useful life; First passage time; Expectation maximization; Prognostics;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Carr, Matthew J. & Wang, Wenbin, 2011. "An approximate algorithm for prognostic modelling using condition monitoring information," European Journal of Operational Research, Elsevier, vol. 211(1), pages 90-96, May.
    2. Si, Xiao-Sheng & Wang, Wenbin & Hu, Chang-Hua & Zhou, Dong-Hua, 2011. "Remaining useful life estimation - A review on the statistical data driven approaches," European Journal of Operational Research, Elsevier, vol. 213(1), pages 1-14, August.
    3. Wang, W. & Zhang, W., 2008. "An asset residual life prediction model based on expert judgments," European Journal of Operational Research, Elsevier, vol. 188(2), pages 496-505, July.
    4. Wang, Wenbin, 2007. "A two-stage prognosis model in condition based maintenance," European Journal of Operational Research, Elsevier, vol. 182(3), pages 1177-1187, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Shengjin Tang & Chuanqiang Yu & Xue Wang & Xiaosong Guo & Xiaosheng Si, 2014. "Remaining Useful Life Prediction of Lithium-Ion Batteries Based on the Wiener Process with Measurement Error," Energies, MDPI, Open Access Journal, vol. 7(2), pages 520-547, January.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:226:y:2013:i:1:p:53-66. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.