Advanced Search
MyIDEAS: Login to save this article or follow this journal

A Multi-Period Renewal equipment problem

Contents:

Author Info

  • Cao, Xiaokang
  • Jouglet, Antoine
  • Nace, Dritan
Registered author(s):

    Abstract

    This paper looks at a Multi-Period Renewal equipment problem (MPR). It is inspired by a specific real-life situation where a set of hardware items is to be managed and their replacement dates determined, given a budget over a time horizon comprising a set of periods. The particular characteristic of this problem is the possibility of carrying forward any unused budget from one period to the next, which corresponds to the multi-periodicity aspect in the model. We begin with the industrial context and deduce the corresponding knapsack model that is the subject of this paper. Links to certain variants of the knapsack problem are next examined. We provide a study of complexity of the problem, for some of its special cases, and for its continuous relaxation. In particular, it is established that its continuous relaxation and a special case can be solved in (strongly) polynomial time, that three other special cases can be solved in pseudo-polynomial time, while the problem itself is strongly NP-hard when the number of periods is unbounded. Next, two heuristics are proposed for solving the MPR problem. Experimental results and comparisons with the Martello&Toth and Dantzig heuristics, adapted to our problem, are provided.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/pii/S0377221711010885
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal European Journal of Operational Research.

    Volume (Year): 218 (2012)
    Issue (Month): 3 ()
    Pages: 838-846

    as in new window
    Handle: RePEc:eee:ejores:v:218:y:2012:i:3:p:838-846

    Contact details of provider:
    Web page: http://www.elsevier.com/locate/eor

    Related research

    Keywords: Scheduling; Knapsack; Multi-period; Complexity; Heuristic methods;

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:218:y:2012:i:3:p:838-846. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.