IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v200y2010i2p395-408.html
   My bibliography  Save this article

An Improved Genetic Algorithm for the Distributed and Flexible Job-shop Scheduling problem

Author

Listed:
  • De Giovanni, L.
  • Pezzella, F.

Abstract

The Distributed and Flexible Job-shop Scheduling problem (DFJS) considers the scheduling of distributed manufacturing environments, where jobs are processed by a system of several Flexible Manufacturing Units (FMUs). Distributed scheduling problems deal with the assignment of jobs to FMUs and with determining the scheduling of each FMU, in terms of assignment of each job operation to one of the machines able to work it (job-routing flexibility) and sequence of operations on each machine. The objective is to minimize the global makespan over all the FMUs. This paper proposes an Improved Genetic Algorithm to solve the Distributed and Flexible Job-shop Scheduling problem. With respect to the solution representation for non-distributed job-shop scheduling, gene encoding is extended to include information on job-to-FMU assignment, and a greedy decoding procedure exploits flexibility and determines the job routings. Besides traditional crossover and mutation operators, a new local search based operator is used to improve available solutions by refining the most promising individuals of each generation. The proposed approach has been compared with other algorithms for distributed scheduling and evaluated with satisfactory results on a large set of distributed-and-flexible scheduling problems derived from classical job-shop scheduling benchmarks.

Suggested Citation

  • De Giovanni, L. & Pezzella, F., 2010. "An Improved Genetic Algorithm for the Distributed and Flexible Job-shop Scheduling problem," European Journal of Operational Research, Elsevier, vol. 200(2), pages 395-408, January.
  • Handle: RePEc:eee:ejores:v:200:y:2010:i:2:p:395-408
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00011-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stéphane Dauzère-Pérès & Jan Paulli, 1997. "An integrated approach for modeling and solving the general multiprocessor job-shop scheduling problem using tabu search," Annals of Operations Research, Springer, vol. 70(0), pages 281-306, April.
    2. M. R. Garey & D. S. Johnson & Ravi Sethi, 1976. "The Complexity of Flowshop and Jobshop Scheduling," Mathematics of Operations Research, INFORMS, vol. 1(2), pages 117-129, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Po-Hsiang Lu & Muh-Cherng Wu & Hao Tan & Yong-Han Peng & Chen-Fu Chen, 2018. "A genetic algorithm embedded with a concise chromosome representation for distributed and flexible job-shop scheduling problems," Journal of Intelligent Manufacturing, Springer, vol. 29(1), pages 19-34, January.
    2. Wei Xiong & Dongmei Fu, 2018. "A new immune multi-agent system for the flexible job shop scheduling problem," Journal of Intelligent Manufacturing, Springer, vol. 29(4), pages 857-873, April.
    3. Shijin Wang & Ming Liu, 2016. "Two-machine flow shop scheduling integrated with preventive maintenance planning," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(3), pages 672-690, February.
    4. J. Behnamian & S. M. T. Fatemi Ghomi, 2016. "A survey of multi-factory scheduling," Journal of Intelligent Manufacturing, Springer, vol. 27(1), pages 231-249, February.
    5. Sels, Veronique & Craeymeersch, Kjeld & Vanhoucke, Mario, 2011. "A hybrid single and dual population search procedure for the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 215(3), pages 512-523, December.
    6. Zhang, Sicheng & Li, Xiang & Zhang, Bowen & Wang, Shouyang, 2020. "Multi-objective optimisation in flexible assembly job shop scheduling using a distributed ant colony system," European Journal of Operational Research, Elsevier, vol. 283(2), pages 441-460.
    7. Mohammad Ali Beheshtinia & Parisa Feizollahy & Masood Fathi, 2021. "Supply Chain Optimization Considering Sustainability Aspects," Sustainability, MDPI, vol. 13(21), pages 1-23, October.
    8. Yiyi Xu & M’hammed Sahnoun & Fouad Ben Abdelaziz & David Baudry, 2022. "A simulated multi-objective model for flexible job shop transportation scheduling," Annals of Operations Research, Springer, vol. 311(2), pages 899-920, April.
    9. Xiong, Fuli & Xing, Keyi & Wang, Feng, 2015. "Scheduling a hybrid assembly-differentiation flowshop to minimize total flow time," European Journal of Operational Research, Elsevier, vol. 240(2), pages 338-354.
    10. Qingxin Liu & Ni Li & Heming Jia & Qi Qi & Laith Abualigah & Yuxiang Liu, 2022. "A Hybrid Arithmetic Optimization and Golden Sine Algorithm for Solving Industrial Engineering Design Problems," Mathematics, MDPI, vol. 10(9), pages 1-30, May.
    11. Hao-Chin Chang & Tung-Kuan Liu, 2017. "Optimisation of distributed manufacturing flexible job shop scheduling by using hybrid genetic algorithms," Journal of Intelligent Manufacturing, Springer, vol. 28(8), pages 1973-1986, December.
    12. Georgiadis, Patroklos & Michaloudis, Charalampos, 2012. "Real-time production planning and control system for job-shop manufacturing: A system dynamics analysis," European Journal of Operational Research, Elsevier, vol. 216(1), pages 94-104.
    13. Li Zhou & Zhuoning Chen & Shaoping Chen, 2018. "An effective detailed operation scheduling in MES based on hybrid genetic algorithm," Journal of Intelligent Manufacturing, Springer, vol. 29(1), pages 135-153, January.
    14. Arshad Ali & Yuvraj Gajpal & Tarek Y. Elmekkawy, 2021. "Distributed permutation flowshop scheduling problem with total completion time objective," OPSEARCH, Springer;Operational Research Society of India, vol. 58(2), pages 425-447, June.
    15. Shoujing Zhang & Tiantian Hou & Qing Qu & Adam Glowacz & Samar M. Alqhtani & Muhammad Irfan & Grzegorz Królczyk & Zhixiong Li, 2022. "An Improved Mayfly Method to Solve Distributed Flexible Job Shop Scheduling Problem under Dual Resource Constraints," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    16. Sun, X.T. & Chung, S.H. & Chan, Felix T.S., 2015. "Integrated scheduling of a multi-product multi-factory manufacturing system with maritime transport limits," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 79(C), pages 110-127.
    17. Li, Xinyu & Gao, Liang, 2016. "An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem," International Journal of Production Economics, Elsevier, vol. 174(C), pages 93-110.
    18. Wang, Sheng-yao & Wang, Ling & Liu, Min & Xu, Ye, 2013. "An effective estimation of distribution algorithm for solving the distributed permutation flow-shop scheduling problem," International Journal of Production Economics, Elsevier, vol. 145(1), pages 387-396.
    19. Lili Dai & He Lu & Dezheng Hua & Xinhua Liu & Hongming Chen & Adam Glowacz & Grzegorz Królczyk & Zhixiong Li, 2022. "A Novel Production Scheduling Approach Based on Improved Hybrid Genetic Algorithm," Sustainability, MDPI, vol. 14(18), pages 1-15, September.
    20. Arash Amirteimoori & Reza Kia, 2023. "Concurrent scheduling of jobs and AGVs in a flexible job shop system: a parallel hybrid PSO-GA meta-heuristic," Flexible Services and Manufacturing Journal, Springer, vol. 35(3), pages 727-753, September.
    21. Nicolás Álvarez-Gil & Rafael Rosillo & David de la Fuente & Raúl Pino, 2021. "A discrete firefly algorithm for solving the flexible job-shop scheduling problem in a make-to-order manufacturing system," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(4), pages 1353-1374, December.
    22. Guiliang Gong & Raymond Chiong & Qianwang Deng & Qiang Luo, 2020. "A memetic algorithm for multi-objective distributed production scheduling: minimizing the makespan and total energy consumption," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1443-1466, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Liji & Buscher, Udo, 2012. "Solving the serial batching problem in job shop manufacturing systems," European Journal of Operational Research, Elsevier, vol. 221(1), pages 14-26.
    2. Nicolás Álvarez-Gil & Rafael Rosillo & David de la Fuente & Raúl Pino, 2021. "A discrete firefly algorithm for solving the flexible job-shop scheduling problem in a make-to-order manufacturing system," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(4), pages 1353-1374, December.
    3. Quadt, Daniel & Kuhn, Heinrich, 2007. "A taxonomy of flexible flow line scheduling procedures," European Journal of Operational Research, Elsevier, vol. 178(3), pages 686-698, May.
    4. González, Miguel A. & Vela, Camino R. & Varela, Ramiro, 2015. "Scatter search with path relinking for the flexible job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 245(1), pages 35-45.
    5. Xiong, Hegen & Fan, Huali & Jiang, Guozhang & Li, Gongfa, 2017. "A simulation-based study of dispatching rules in a dynamic job shop scheduling problem with batch release and extended technical precedence constraints," European Journal of Operational Research, Elsevier, vol. 257(1), pages 13-24.
    6. Lunardi, Willian T. & Birgin, Ernesto G. & Ronconi, Débora P. & Voos, Holger, 2021. "Metaheuristics for the online printing shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 293(2), pages 419-441.
    7. Rossi, Andrea, 2014. "Flexible job shop scheduling with sequence-dependent setup and transportation times by ant colony with reinforced pheromone relationships," International Journal of Production Economics, Elsevier, vol. 153(C), pages 253-267.
    8. K. Z. Gao & P. N. Suganthan & Q. K. Pan & T. J. Chua & T. X. Cai & C. S. Chong, 2016. "Discrete harmony search algorithm for flexible job shop scheduling problem with multiple objectives," Journal of Intelligent Manufacturing, Springer, vol. 27(2), pages 363-374, April.
    9. Po-Hsiang Lu & Muh-Cherng Wu & Hao Tan & Yong-Han Peng & Chen-Fu Chen, 2018. "A genetic algorithm embedded with a concise chromosome representation for distributed and flexible job-shop scheduling problems," Journal of Intelligent Manufacturing, Springer, vol. 29(1), pages 19-34, January.
    10. Shen, Liji & Dauzère-Pérès, Stéphane & Neufeld, Janis S., 2018. "Solving the flexible job shop scheduling problem with sequence-dependent setup times," European Journal of Operational Research, Elsevier, vol. 265(2), pages 503-516.
    11. João M. R. C. Fernandes & Seyed Mahdi Homayouni & Dalila B. M. M. Fontes, 2022. "Energy-Efficient Scheduling in Job Shop Manufacturing Systems: A Literature Review," Sustainability, MDPI, vol. 14(10), pages 1-34, May.
    12. Berterottière, Lucas & Dauzère-Pérès, Stéphane & Yugma, Claude, 2024. "Flexible job-shop scheduling with transportation resources," European Journal of Operational Research, Elsevier, vol. 312(3), pages 890-909.
    13. Alper Türkyılmaz & Özlem Şenvar & İrem Ünal & Serol Bulkan, 2020. "A research survey: heuristic approaches for solving multi objective flexible job shop problems," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 1949-1983, December.
    14. Mehravaran, Yasaman & Logendran, Rasaratnam, 2012. "Non-permutation flowshop scheduling in a supply chain with sequence-dependent setup times," International Journal of Production Economics, Elsevier, vol. 135(2), pages 953-963.
    15. Zhengcai Cao & Lijie Zhou & Biao Hu & Chengran Lin, 2019. "An Adaptive Scheduling Algorithm for Dynamic Jobs for Dealing with the Flexible Job Shop Scheduling Problem," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(3), pages 299-309, June.
    16. Wang, Ling & Sun, Lin-Yan & Sun, Lin-Hui & Wang, Ji-Bo, 2010. "On three-machine flow shop scheduling with deteriorating jobs," International Journal of Production Economics, Elsevier, vol. 125(1), pages 185-189, May.
    17. Gupta, Jatinder N.D. & Koulamas, Christos & Kyparisis, George J., 2006. "Performance guarantees for flowshop heuristics to minimize makespan," European Journal of Operational Research, Elsevier, vol. 169(3), pages 865-872, March.
    18. Ganesan, Viswanath Kumar & Sivakumar, Appa Iyer, 2006. "Scheduling in static jobshops for minimizing mean flowtime subject to minimum total deviation of job completion times," International Journal of Production Economics, Elsevier, vol. 103(2), pages 633-647, October.
    19. P J Kalczynski & J Kamburowski, 2004. "Generalization of Johnson's and Talwar's scheduling rules in two-machine stochastic flow shops," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(12), pages 1358-1362, December.
    20. Ramalhinho Lourenco, Helena, 1996. "Sevast'yanov's algorithm for the flow-shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 91(1), pages 176-189, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:200:y:2010:i:2:p:395-408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.