IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v191y2008i3p612-622.html
   My bibliography  Save this article

An effective VNS for the capacitated p-median problem

Author

Listed:
  • Fleszar, K.
  • Hindi, K.S.

Abstract

In the capacitated p-median problem (CPMP), a set of n customers is to be partitioned into p disjoint clusters, such that the total dissimilarity within each cluster is minimized subject to constraints on maximum cluster capacity. Dissimilarity of a cluster is the sum of the dissimilarities between each customer who belongs to the cluster and the median associated with the cluster. An effective variable neighbourhood search heuristic for this problem is proposed. The heuristic is characterized by the use of easily computed lower bounds to assess whether undertaking computationally expensive calculation of the worth of moves, within the neighbourhood search, is necessary. The small proportion of moves that need to be assessed fully are then evaluated by an exact solution of a relatively small subproblem. Computational results on five standard sets of benchmark problem instances show that the heuristic finds all the best-known solutions. For one instance, the previously best-known solution is improved, if only marginally.

Suggested Citation

  • Fleszar, K. & Hindi, K.S., 2008. "An effective VNS for the capacitated p-median problem," European Journal of Operational Research, Elsevier, vol. 191(3), pages 612-622, December.
  • Handle: RePEc:eee:ejores:v:191:y:2008:i:3:p:612-622
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(07)00120-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yagiura, Mutsunori & Ibaraki, Toshihide & Glover, Fred, 2006. "A path relinking approach with ejection chains for the generalized assignment problem," European Journal of Operational Research, Elsevier, vol. 169(2), pages 548-569, March.
    2. Bozkaya, Burcin & Erkut, Erhan & Laporte, Gilbert, 2003. "A tabu search heuristic and adaptive memory procedure for political districting," European Journal of Operational Research, Elsevier, vol. 144(1), pages 12-26, January.
    3. Koskosidis, Yiannis A. & Powell, Warren B., 1992. "Clustering algorithms for consolidation of customer orders into vehicle shipments," Transportation Research Part B: Methodological, Elsevier, vol. 26(5), pages 365-379, October.
    4. Fathali, J. & Kakhki, H. Taghizadeh, 2006. "Solving the p-median problem with pos/neg weights by variable neighborhood search and some results for special cases," European Journal of Operational Research, Elsevier, vol. 170(2), pages 440-462, April.
    5. Diaz, Juan A. & Fernandez, Elena, 2006. "Hybrid scatter search and path relinking for the capacitated p-median problem," European Journal of Operational Research, Elsevier, vol. 169(2), pages 570-585, March.
    6. Ahmadi, Samad & Osman, Ibrahim H., 2005. "Greedy random adaptive memory programming search for the capacitated clustering problem," European Journal of Operational Research, Elsevier, vol. 162(1), pages 30-44, April.
    7. Scheuerer, Stephan & Wendolsky, Rolf, 2006. "A scatter search heuristic for the capacitated clustering problem," European Journal of Operational Research, Elsevier, vol. 169(2), pages 533-547, March.
    8. Mulvey, John M. & Beck, Michael P., 1984. "Solving capacitated clustering problems," European Journal of Operational Research, Elsevier, vol. 18(3), pages 339-348, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abareshi, Maryam & Zaferanieh, Mehdi, 2019. "A bi-level capacitated P-median facility location problem with the most likely allocation solution," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 1-20.
    2. Fleszar, Krzysztof & Osman, Ibrahim H. & Hindi, Khalil S., 2009. "A variable neighbourhood search algorithm for the open vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 195(3), pages 803-809, June.
    3. Albareda-Sambola, Maria & Díaz, Juan A. & Fernández, Elena, 2010. "Lagrangean duals and exact solution to the capacitated p-center problem," European Journal of Operational Research, Elsevier, vol. 201(1), pages 71-81, February.
    4. Alcaraz, Javier & Landete, Mercedes & Monge, Juan F., 2012. "Design and analysis of hybrid metaheuristics for the Reliability p-Median Problem," European Journal of Operational Research, Elsevier, vol. 222(1), pages 54-64.
    5. Zachary Steever & Chase Murray & Junsong Yuan & Mark Karwan & Marco Lübbecke, 2022. "An Image-Based Approach to Detecting Structural Similarity Among Mixed Integer Programs," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 1849-1870, July.
    6. Juan A. Díaz & Dolores E. Luna, 2017. "Primal and dual bounds for the vertex p-median problem with balance constraints," Annals of Operations Research, Springer, vol. 258(2), pages 613-638, November.
    7. Mai, Feng & Fry, Michael J. & Ohlmann, Jeffrey W., 2018. "Model-based capacitated clustering with posterior regularization," European Journal of Operational Research, Elsevier, vol. 271(2), pages 594-605.
    8. Lamb, John D., 2012. "Variable neighbourhood structures for cycle location problems," European Journal of Operational Research, Elsevier, vol. 223(1), pages 15-26.
    9. Pierre Hansen & Nenad Mladenović & José Moreno Pérez, 2010. "Variable neighbourhood search: methods and applications," Annals of Operations Research, Springer, vol. 175(1), pages 367-407, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mai, Feng & Fry, Michael J. & Ohlmann, Jeffrey W., 2018. "Model-based capacitated clustering with posterior regularization," European Journal of Operational Research, Elsevier, vol. 271(2), pages 594-605.
    2. I H Osman & S Ahmadi, 2007. "Guided construction search metaheuristics for the capacitated p-median problem with single source constraint," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(1), pages 100-114, January.
    3. A I Jarrah & J F Bard, 2011. "Pickup and delivery network segmentation using contiguous geographic clustering," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(10), pages 1827-1843, October.
    4. Scheuerer, Stephan & Wendolsky, Rolf, 2006. "A scatter search heuristic for the capacitated clustering problem," European Journal of Operational Research, Elsevier, vol. 169(2), pages 533-547, March.
    5. Lu Han & Dachuan Xu & Donglei Du & Dongmei Zhang, 0. "An approximation algorithm for the uniform capacitated k-means problem," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-12.
    6. Wooseung Jang & Huay H. Lim & Thomas J. Crowe & Gail Raskin & Thomas E. Perkins, 2006. "The Missouri Lottery Optimizes Its Scheduling and Routing to Improve Efficiency and Balance," Interfaces, INFORMS, vol. 36(4), pages 302-313, August.
    7. Juan A. Díaz & Dolores E. Luna, 2017. "Primal and dual bounds for the vertex p-median problem with balance constraints," Annals of Operations Research, Springer, vol. 258(2), pages 613-638, November.
    8. Zhou, Qing & Benlic, Una & Wu, Qinghua & Hao, Jin-Kao, 2019. "Heuristic search to the capacitated clustering problem," European Journal of Operational Research, Elsevier, vol. 273(2), pages 464-487.
    9. Belarmino Adenso-Díaz & Mónica González & Emérita García, 1998. "A Hierarchical Approach to Managing Dairy Routing," Interfaces, INFORMS, vol. 28(2), pages 21-31, April.
    10. Lu Han & Dachuan Xu & Donglei Du & Dongmei Zhang, 2022. "An approximation algorithm for the uniform capacitated k-means problem," Journal of Combinatorial Optimization, Springer, vol. 44(3), pages 1812-1823, October.
    11. Ahmadi, Samad & Osman, Ibrahim H., 2005. "Greedy random adaptive memory programming search for the capacitated clustering problem," European Journal of Operational Research, Elsevier, vol. 162(1), pages 30-44, April.
    12. Jianing Zhi & Burcu B. Keskin, 2018. "A Multi-Product Production/Distribution System Design Problem with Direct Shipments and Lateral Transshipments," Networks and Spatial Economics, Springer, vol. 18(4), pages 937-972, December.
    13. M Büther, 2010. "Reducing the elastic generalized assignment problem to the standard generalized assignment problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(11), pages 1582-1595, November.
    14. Amy Cohn & Michael Magazine & George Polak, 2009. "Rank‐Cluster‐and‐Prune: An algorithm for generating clusters in complex set partitioning problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(3), pages 215-225, April.
    15. Büther, Marcel, 2007. "Reducing the elastic generalized assignment problem to the standard generalized assignment problem," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 632, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    16. Behrooz Alizadeh & Somayeh Bakhteh, 2017. "A modified firefly algorithm for general inverse p-median location problems under different distance norms," OPSEARCH, Springer;Operational Research Society of India, vol. 54(3), pages 618-636, September.
    17. Rui Fragoso & Conceição Rego & Vladimir Bushenkov, 2016. "Clustering of Territorial Areas: A Multi-Criteria Districting Problem," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 14(2), pages 179-198, December.
    18. Noureddine Bouhmala, 2019. "Combining simulated annealing with local search heuristic for MAX-SAT," Journal of Heuristics, Springer, vol. 25(1), pages 47-69, February.
    19. Xin Tang & Ameur Soukhal & Vincent T’kindt, 2014. "Preprocessing for a map sectorization problem by means of mathematical programming," Annals of Operations Research, Springer, vol. 222(1), pages 551-569, November.
    20. Kijmanawat, Kerati & Ieda, Hitoshi, 2005. "Development and Application of CM-GATS Algorithms in Solving Large Multilevel Hierarchical Network Design Problems," Research in Transportation Economics, Elsevier, vol. 13(1), pages 121-142, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:191:y:2008:i:3:p:612-622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.