IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v171y2006i1p227-254.html
   My bibliography  Save this article

Achieving sharp deliveries in supply chains through variance pool allocation

Author

Listed:
  • Garg, D.
  • Narahari, Y.
  • Viswanadham, N.

Abstract

No abstract is available for this item.

Suggested Citation

  • Garg, D. & Narahari, Y. & Viswanadham, N., 2006. "Achieving sharp deliveries in supply chains through variance pool allocation," European Journal of Operational Research, Elsevier, vol. 171(1), pages 227-254, May.
  • Handle: RePEc:eee:ejores:v:171:y:2006:i:1:p:227-254
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(04)00596-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leroy B. Schwarz & Bryan L. Deuermeyer & Ralph D. Badinelli, 1985. "Fill-Rate Optimization in a One-Warehouse N-Identical Retailer Distribution System," Management Science, INFORMS, vol. 31(4), pages 488-498, April.
    2. Jing-Sheng Song & Susan H. Xu & Bin Liu, 1999. "Order-Fulfillment Performance Measures in an Assemble-to-Order System with Stochastic Leadtimes," Operations Research, INFORMS, vol. 47(1), pages 131-149, February.
    3. Paul S. Adler & Avi Mandelbaum & Viên Nguyen & Elizabeth Schwerer, 1995. "From Project to Process Management: An Empirically-Based Framework for Analyzing Product Development Time," Management Science, INFORMS, vol. 41(3), pages 458-484, March.
    4. Maloni, Michael J. & Benton, W.C., 1997. "Supply chain partnerships: Opportunities for operations research," European Journal of Operational Research, Elsevier, vol. 101(3), pages 419-429, September.
    5. Jing-Sheng Song & David D. Yao, 2002. "Performance Analysis and Optimization of Assemble-to-Order Systems with Random Lead Times," Operations Research, INFORMS, vol. 50(5), pages 889-903, October.
    6. Jing-Sheng Song, 1994. "The Effect of Leadtime Uncertainty in a Simple Stochastic Inventory Model," Management Science, INFORMS, vol. 40(5), pages 603-613, May.
    7. Gary D. Eppen & R. Kipp Martin, 1988. "Determining Safety Stock in the Presence of Stochastic Lead Time and Demand," Management Science, INFORMS, vol. 34(11), pages 1380-1390, November.
    8. Rema Hariharan & Paul Zipkin, 1995. "Customer-Order Information, Leadtimes, and Inventories," Management Science, INFORMS, vol. 41(10), pages 1599-1607, October.
    9. Markus Ettl & Gerald E. Feigin & Grace Y. Lin & David D. Yao, 2000. "A Supply Network Model with Base-Stock Control and Service Requirements," Operations Research, INFORMS, vol. 48(2), pages 216-232, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heydari, Jafar, 2014. "Lead time variation control using reliable shipment equipment: An incentive scheme for supply chain coordination," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 63(C), pages 44-58.
    2. Weihua Liu & Yi Yang & Shuqing Wang & Enze Bai, 2017. "A scheduling model of logistics service supply chain based on the time windows of the FLSP’s operation and customer requirement," Annals of Operations Research, Springer, vol. 257(1), pages 183-206, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hoen, K.M.R. & Güllü, R. & van Houtum, G.J. & Vliegen, I.M.H., 2011. "A simple and accurate approximation for the order fill rates in lost-sales Assemble-to-Order systems," International Journal of Production Economics, Elsevier, vol. 133(1), pages 95-104, September.
    2. Yingdong Lu & Jing-Sheng Song & David D. Yao, 2003. "Order Fill Rate, Leadtime Variability, and Advance Demand Information in an Assemble-to-Order System," Operations Research, INFORMS, vol. 51(2), pages 292-308, April.
    3. de Kok, Ton & Grob, Christopher & Laumanns, Marco & Minner, Stefan & Rambau, Jörg & Schade, Konrad, 2018. "A typology and literature review on stochastic multi-echelon inventory models," European Journal of Operational Research, Elsevier, vol. 269(3), pages 955-983.
    4. Lijian Lu & Jing‐Sheng Song & Hanqin Zhang, 2015. "Optimal and asymptotically optimal policies for assemble‐to‐order n‐ and W‐systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(8), pages 617-645, December.
    5. Sandun C. Perera & Suresh P. Sethi, 2023. "A survey of stochastic inventory models with fixed costs: Optimality of (s, S) and (s, S)‐type policies—Discrete‐time case," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 131-153, January.
    6. Yao Zhao & David Simchi-Levi, 2006. "Performance Analysis and Evaluation of Assemble-to-Order Systems with Stochastic Sequential Lead Times," Operations Research, INFORMS, vol. 54(4), pages 706-724, August.
    7. Vanteddu, Gangaraju & Chinnam, Ratna Babu & Gushikin, Oleg, 2011. "Supply chain focus dependent supplier selection problem," International Journal of Production Economics, Elsevier, vol. 129(1), pages 204-216, January.
    8. So, Kut C. & Zheng, Xiaona, 2003. "Impact of supplier's lead time and forecast demand updating on retailer's order quantity variability in a two-level supply chain," International Journal of Production Economics, Elsevier, vol. 86(2), pages 169-179, November.
    9. Iida, Tetsuo, 2015. "Benefits of leadtime information and of its combination with demand forecast information," International Journal of Production Economics, Elsevier, vol. 163(C), pages 146-156.
    10. David Simchi-Levi & Yao Zhao, 2005. "Safety Stock Positioning in Supply Chains with Stochastic Lead Times," Manufacturing & Service Operations Management, INFORMS, vol. 7(4), pages 295-318, December.
    11. Jing-Sheng Song & David D. Yao, 2002. "Performance Analysis and Optimization of Assemble-to-Order Systems with Random Lead Times," Operations Research, INFORMS, vol. 50(5), pages 889-903, October.
    12. Tyworth, John E., 2018. "A note on lead-time paradoxes and a tale of competing prescriptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 139-150.
    13. Osman, Hany & Demirli, Kudret, 2012. "Integrated safety stock optimization for multiple sourced stockpoints facing variable demand and lead time," International Journal of Production Economics, Elsevier, vol. 135(1), pages 299-307.
    14. Gregory DeCroix & Jing-Sheng Song & Paul Zipkin, 2005. "A Series System with Returns: Stationary Analysis," Operations Research, INFORMS, vol. 53(2), pages 350-362, April.
    15. Cheng, T.C.E. & Gao, Chunyan & Shen, Houcai, 2011. "Production planning and inventory allocation of a single-product assemble-to-order system with failure-prone machines," International Journal of Production Economics, Elsevier, vol. 131(2), pages 604-617, June.
    16. Zbigniew Michna & Peter Nielsen, 2013. "The impact of lead time forecasting on the bullwhip effect," Papers 1309.7374, arXiv.org, revised Jul 2015.
    17. Mustafa K. Doğru & Martin I. Reiman & Qiong Wang, 2010. "A Stochastic Programming Based Inventory Policy for Assemble-to-Order Systems with Application to the W Model," Operations Research, INFORMS, vol. 58(4-part-1), pages 849-864, August.
    18. Pan, Wenting & So, Kut C. & Xiao, Guang, 2022. "Benefits of backup sourcing for components in assembly systems under supply uncertainty," European Journal of Operational Research, Elsevier, vol. 302(1), pages 158-171.
    19. Ramesh Bollapragada & Uday S. Rao & Jun Zhang, 2004. "Managing Inventory and Supply Performance in Assembly Systems with Random Supply Capacity and Demand," Management Science, INFORMS, vol. 50(12), pages 1729-1743, December.
    20. Sandeep Jain & N. Raghavan, 2009. "A queuing approach for inventory planning with batch ordering in multi-echelon supply chains," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 17(1), pages 95-110, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:171:y:2006:i:1:p:227-254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.