IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v164y2005i1p206-216.html
   My bibliography  Save this article

A least deviation method to obtain a priority vector of a fuzzy preference relation

Author

Listed:
  • Xu, Zeshui
  • Da, Qingli

Abstract

No abstract is available for this item.

Suggested Citation

  • Xu, Zeshui & Da, Qingli, 2005. "A least deviation method to obtain a priority vector of a fuzzy preference relation," European Journal of Operational Research, Elsevier, vol. 164(1), pages 206-216, July.
  • Handle: RePEc:eee:ejores:v:164:y:2005:i:1:p:206-216
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(03)00893-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Herrera, F. & Herrera-Viedma, E. & Chiclana, F., 2001. "Multiperson decision-making based on multiplicative preference relations," European Journal of Operational Research, Elsevier, vol. 129(2), pages 372-385, March.
    2. Roubens, M., 1989. "Some properties of choice functions based on valued binary relations," European Journal of Operational Research, Elsevier, vol. 40(3), pages 309-321, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fedrizzi, Michele & Giove, Silvio, 2007. "Incomplete pairwise comparison and consistency optimization," European Journal of Operational Research, Elsevier, vol. 183(1), pages 303-313, November.
    2. Sanja Puzović & Jasmina Vesić Vasović & Dragan D. Milanović & Vladan Paunović, 2023. "A Hybrid Fuzzy MCDM Approach to Open Innovation Partner Evaluation," Mathematics, MDPI, vol. 11(14), pages 1-26, July.
    3. Huayou Chen & Ligang Zhou, 2012. "A Relative Entropy Approach to Group Decision Making with Interval Reciprocal Relations Based on COWA Operator," Group Decision and Negotiation, Springer, vol. 21(4), pages 585-599, July.
    4. Shahryar Monghasemi & Mohammad Reza Nikoo & Mohammad Ali Khaksar Fasaee & Jan Adamowski, 2017. "A Hybrid of Genetic Algorithm and Evidential Reasoning for Optimal Design of Project Scheduling: A Systematic Negotiation Framework for Multiple Decision-Makers," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(02), pages 389-420, March.
    5. Xu, Zeshui & Chen, Jian, 2008. "Some models for deriving the priority weights from interval fuzzy preference relations," European Journal of Operational Research, Elsevier, vol. 184(1), pages 266-280, January.
    6. Zhu, Bin & Xu, Zeshui, 2014. "Stochastic preference analysis in numerical preference relations," European Journal of Operational Research, Elsevier, vol. 237(2), pages 628-633.
    7. Yazidi, Anis & Ivanovska, Magdalena & Zennaro, Fabio M. & Lind, Pedro G. & Viedma, Enrique Herrera, 2022. "A new decision making model based on Rank Centrality for GDM with fuzzy preference relations," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1030-1041.
    8. Zhu, Bin & Xu, Zeshui & Zhang, Ren & Hong, Mei, 2015. "Generalized analytic network process," European Journal of Operational Research, Elsevier, vol. 244(1), pages 277-288.
    9. Ze-shui Xu, 2009. "A method for estimating criteria weights from intuitionistic preference relations," Fuzzy Information and Engineering, Springer, vol. 1(1), pages 79-89, March.
    10. Chao, Xiangrui & Kou, Gang & Li, Tie & Peng, Yi, 2018. "Jie Ke versus AlphaGo: A ranking approach using decision making method for large-scale data with incomplete information," European Journal of Operational Research, Elsevier, vol. 265(1), pages 239-247.
    11. Rezaei, Jafar & Ortt, Roland, 2013. "Multi-criteria supplier segmentation using a fuzzy preference relations based AHP," European Journal of Operational Research, Elsevier, vol. 225(1), pages 75-84.
    12. Tang, Ming & Liao, Huchang & Xu, Jiuping & Streimikiene, Dalia & Zheng, Xiaosong, 2020. "Adaptive consensus reaching process with hybrid strategies for large-scale group decision making," European Journal of Operational Research, Elsevier, vol. 282(3), pages 957-971.
    13. Michele Fedrizzi & Matteo Brunelli, 2008. "On the priority vector associated with a fuzzy preference relation and a multiplicative preference relation," DISA Working Papers 0807, Department of Computer and Management Sciences, University of Trento, Italy, revised 04 Sep 2008.
    14. Wanying Xie & Zeshui Xu & Zhiliang Ren & Hai Wang, 2018. "Probabilistic Linguistic Analytic Hierarchy Process and Its Application on the Performance Assessment of Xiongan New Area," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(06), pages 1693-1724, November.
    15. Wang, Ying-Ming & Fan, Zhi-Ping & Hua, Zhongsheng, 2007. "A chi-square method for obtaining a priority vector from multiplicative and fuzzy preference relations," European Journal of Operational Research, Elsevier, vol. 182(1), pages 356-366, October.
    16. Wang, Ying-Ming & Parkan, Celik, 2008. "Optimal aggregation of fuzzy preference relations with an application to broadband internet service selection," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1476-1486, June.
    17. Yulan Wang & Huayou Chen & Ligang Zhou, 2013. "Logarithm Compatibility of Interval Multiplicative Preference Relations with an Application to Determining the Optimal Weights of Experts in the Group Decision Making," Group Decision and Negotiation, Springer, vol. 22(4), pages 759-772, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ling-Zhong Lin, 2010. "Fuzzy multi-linguistic preferences model of service innovations at wholesale service delivery," Quality & Quantity: International Journal of Methodology, Springer, vol. 44(2), pages 217-237, February.
    2. Hellendoorn, Hans, 1997. "After the fuzzy wave reached Europe," European Journal of Operational Research, Elsevier, vol. 99(1), pages 58-71, May.
    3. Greco, Salvatore, 1997. "A new PCCA method: IDRA," European Journal of Operational Research, Elsevier, vol. 98(3), pages 587-601, May.
    4. Jacinto González-Pachón & Carlos Romero, 2007. "Inferring consensus weights from pairwise comparison matrices without suitable properties," Annals of Operations Research, Springer, vol. 154(1), pages 123-132, October.
    5. Wu, Zhibin & Huang, Shuai & Xu, Jiuping, 2019. "Multi-stage optimization models for individual consistency and group consensus with preference relations," European Journal of Operational Research, Elsevier, vol. 275(1), pages 182-194.
    6. Liu Fang & Peng Yanan & Zhang Weiguo & Pedrycz Witold, 2017. "On Consistency in AHP and Fuzzy AHP," Journal of Systems Science and Information, De Gruyter, vol. 5(2), pages 128-147, April.
    7. Montero, J. & Tejada, J. & Cutello, C., 1997. "A general model for deriving preference structures from data," European Journal of Operational Research, Elsevier, vol. 98(1), pages 98-110, April.
    8. Tien-Chin Wang & Hsiu-Chin Hsieh & Xuan-Huynh Nguyen & Chin-Ying Huang & Jen-Yao Lee, 2022. "Evaluating the Influence of Criteria Revitalization Strategy Implementation for the Hospitality Industry in the Post-Pandemic Era," World, MDPI, vol. 3(2), pages 1-18, April.
    9. Xiangrui Chao & Yucheng Dong & Gang Kou & Yi Peng, 2022. "How to determine the consensus threshold in group decision making: a method based on efficiency benchmark using benefit and cost insight," Annals of Operations Research, Springer, vol. 316(1), pages 143-177, September.
    10. Ligang Zhou & Huayou Chen & Jinpei Liu, 2013. "Continuous Ordered Weighted Distance Measure and Its Application to Multiple Attribute Group Decision Making," Group Decision and Negotiation, Springer, vol. 22(4), pages 739-758, July.
    11. Lihua Liu & Jing Huang & Huimin Wang, 2020. "Visibility Graph Power Geometric Aggregation Operator and Its Application in Water, Energy and Food Efficiency Evaluation," IJERPH, MDPI, vol. 17(11), pages 1-16, May.
    12. Peide Liu & Li He & Xiaocun Yu, 2016. "Generalized Hybrid Aggregation Operators Based on the 2-Dimension Uncertain Linguistic Information for Multiple Attribute Group Decision Making," Group Decision and Negotiation, Springer, vol. 25(1), pages 103-126, January.
    13. Min Xue & Chao Fu & Shanlin Yang, 2022. "A comparative analysis of probabilistic linguistic preference relations and distributed preference relations for decision making," Fuzzy Optimization and Decision Making, Springer, vol. 21(1), pages 71-97, March.
    14. Hanna Borzęcka, 2012. "Multi-criteria decision making using fuzzy preference relations," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 22(3), pages 5-21.
    15. Diaz-Balteiro, L & González-Pachón, J. & Romero, C., 2017. "Measuring systems sustainability with multi-criteria methods: A critical review," European Journal of Operational Research, Elsevier, vol. 258(2), pages 607-616.
    16. Herrera, F. & Herrera-Viedma, E., 2000. "Choice functions and mechanisms for linguistic preference relations," European Journal of Operational Research, Elsevier, vol. 120(1), pages 144-161, January.
    17. Fan, Zhi-Ping & Ma, Jian & Jiang, Yan-Ping & Sun, Yong-Hong & Ma, Louis, 2006. "A goal programming approach to group decision making based on multiplicative preference relations and fuzzy preference relations," European Journal of Operational Research, Elsevier, vol. 174(1), pages 311-321, October.
    18. Carlos Sáenz-Royo & Francisco Chiclana & Enrique Herrera-Viedma, 2022. "Functional Representation of the Intentional Bounded Rationality of Decision-Makers: A Laboratory to Study the Decisions a Priori," Mathematics, MDPI, vol. 10(5), pages 1-17, February.
    19. Xiaodong Yu & Atiq ur Rehman & Samina Ashraf & Muhammad Hussain & Shahzad Faizi, 2023. "Multiperson Decision-Making Using Consistent Interval-Valued Fuzzy Information with Application in Supplier Selection," Mathematics, MDPI, vol. 11(4), pages 1-14, February.
    20. Zorica Srđević & Bojan Srđević & Kosana Suvočarev & Laslo Galamboš, 2020. "Hybrid Constructed Wetland Selection as a Group Decision-Making Problem," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(1), pages 295-310, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:164:y:2005:i:1:p:206-216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.