IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v152y2004i3p758-769.html
   My bibliography  Save this article

An exact algorithm for the identical parallel machine scheduling problem

Author

Listed:
  • Mokotoff, Ethel

Abstract

No abstract is available for this item.

Suggested Citation

  • Mokotoff, Ethel, 2004. "An exact algorithm for the identical parallel machine scheduling problem," European Journal of Operational Research, Elsevier, vol. 152(3), pages 758-769, February.
  • Handle: RePEc:eee:ejores:v:152:y:2004:i:3:p:758-769
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(02)00726-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ethel Mokotoff & José Jimeno & Ana Gutiérrez, 2001. "List scheduling algorithms to minimize the makespan on identical parallel machines," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 9(2), pages 243-269, December.
    2. Mokotoff, E. & Chretienne, P., 2002. "A cutting plane algorithm for the unrelated parallel machine scheduling problem," European Journal of Operational Research, Elsevier, vol. 141(3), pages 515-525, September.
    3. Robert McNaughton, 1959. "Scheduling with Deadlines and Loss Functions," Management Science, INFORMS, vol. 6(1), pages 1-12, October.
    4. VAN ROY, Tony J. & WOLSEY, Laurence A., 1986. "Valid inequalities for mixed 0-1 programs," LIDAM Reprints CORE 697, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Absalom E Ezugwu & Olawale J Adeleke & Serestina Viriri, 2018. "Symbiotic organisms search algorithm for the unrelated parallel machines scheduling with sequence-dependent setup times," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-23, July.
    2. Mauro Dell'Amico & Manuel Iori & Silvano Martello & Michele Monaci, 2008. "Heuristic and Exact Algorithms for the Identical Parallel Machine Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 333-344, August.
    3. Guopeng Song & Roel Leus, 2022. "Parallel Machine Scheduling Under Uncertainty: Models and Exact Algorithms," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3059-3079, November.
    4. Mecler, Davi & Abu-Marrul, Victor & Martinelli, Rafael & Hoff, Arild, 2022. "Iterated greedy algorithms for a complex parallel machine scheduling problem," European Journal of Operational Research, Elsevier, vol. 300(2), pages 545-560.
    5. Prahalad Venkateshan & Joseph Szmerekovsky & George Vairaktarakis, 2020. "A cutting plane approach for the multi-machine precedence-constrained scheduling problem," Annals of Operations Research, Springer, vol. 285(1), pages 247-271, February.
    6. Kris Boudt & Edgars Jakobsons & Steven Vanduffel, 2018. "Block rearranging elements within matrix columns to minimize the variability of the row sums," 4OR, Springer, vol. 16(1), pages 31-50, March.
    7. Chang, Zhiqi & Ding, Jian-Ya & Song, Shiji, 2019. "Distributionally robust scheduling on parallel machines under moment uncertainty," European Journal of Operational Research, Elsevier, vol. 272(3), pages 832-846.
    8. Farbod Farhadi & Sina Ansari & Francisco Jara-Moroni, 2023. "Optimization models for patient and technician scheduling in hemodialysis centers," Health Care Management Science, Springer, vol. 26(3), pages 558-582, September.
    9. Rico Walter & Alexander Lawrinenko, 2020. "A characterization of optimal multiprocessor schedules and new dominance rules," Journal of Combinatorial Optimization, Springer, vol. 40(4), pages 876-900, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bentao Su & Naiming Xie & Yingjie Yang, 2021. "Hybrid genetic algorithm based on bin packing strategy for the unrelated parallel workgroup scheduling problem," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 957-969, April.
    2. Fanjul-Peyro, Luis & Ruiz, Rubén, 2010. "Iterated greedy local search methods for unrelated parallel machine scheduling," European Journal of Operational Research, Elsevier, vol. 207(1), pages 55-69, November.
    3. Liu Guiqing & Li Kai & Cheng Bayi, 2015. "Preemptive Scheduling with Controllable Processing Times on Parallel Machines," Journal of Systems Science and Information, De Gruyter, vol. 3(1), pages 68-76, February.
    4. Hoogeveen, J. A. & Lenstra, J. K. & Veltman, B., 1996. "Preemptive scheduling in a two-stage multiprocessor flow shop is NP-hard," European Journal of Operational Research, Elsevier, vol. 89(1), pages 172-175, February.
    5. Yung-Chia Chang & Kuei-Hu Chang & Ching-Ping Zheng, 2022. "Application of a Non-Dominated Sorting Genetic Algorithm to Solve a Bi-Objective Scheduling Problem Regarding Printed Circuit Boards," Mathematics, MDPI, vol. 10(13), pages 1-21, July.
    6. Scholl, Armin & Becker, Christian, 2006. "State-of-the-art exact and heuristic solution procedures for simple assembly line balancing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 666-693, February.
    7. Leah Epstein, 2023. "Parallel solutions for preemptive makespan scheduling on two identical machines," Journal of Scheduling, Springer, vol. 26(1), pages 61-76, February.
    8. Han, Bin & Zhang, Wenjun & Lu, Xiwen & Lin, Yingzi, 2015. "On-line supply chain scheduling for single-machine and parallel-machine configurations with a single customer: Minimizing the makespan and delivery cost," European Journal of Operational Research, Elsevier, vol. 244(3), pages 704-714.
    9. Miguel Constantino, 1998. "Lower Bounds in Lot-Sizing Models: A Polyhedral Study," Mathematics of Operations Research, INFORMS, vol. 23(1), pages 101-118, February.
    10. Chen, Lin & Ye, Deshi & Zhang, Guochuan, 2018. "Parallel machine scheduling with speed-up resources," European Journal of Operational Research, Elsevier, vol. 268(1), pages 101-112.
    11. Xu, Jun & Wang, Jun-Qiang & Liu, Zhixin, 2022. "Parallel batch scheduling: Impact of increasing machine capacity," Omega, Elsevier, vol. 108(C).
    12. Zeynep Adak & Mahmure Övül Arıoğlu Akan & Serol Bulkan, 0. "Multiprocessor open shop problem: literature review and future directions," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-23.
    13. Jiang, Xiaojuan & Lee, Kangbok & Pinedo, Michael L., 2021. "Ideal schedules in parallel machine settings," European Journal of Operational Research, Elsevier, vol. 290(2), pages 422-434.
    14. Viswanath Nagarajan & Joel Wolf & Andrey Balmin & Kirsten Hildrum, 2019. "Malleable scheduling for flows of jobs and applications to MapReduce," Journal of Scheduling, Springer, vol. 22(4), pages 393-411, August.
    15. Yumei Huo, 2019. "Parallel machine makespan minimization subject to machine availability and total completion time constraints," Journal of Scheduling, Springer, vol. 22(4), pages 433-447, August.
    16. Sterna, Malgorzata, 2011. "A survey of scheduling problems with late work criteria," Omega, Elsevier, vol. 39(2), pages 120-129, April.
    17. Eric Angel & Evripidis Bampis & Fadi Kacem & Dimitrios Letsios, 2019. "Speed scaling on parallel processors with migration," Journal of Combinatorial Optimization, Springer, vol. 37(4), pages 1266-1282, May.
    18. Akiyoshi Shioura & Natalia V. Shakhlevich & Vitaly A. Strusevich, 2017. "Machine Speed Scaling by Adapting Methods for Convex Optimization with Submodular Constraints," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 724-736, November.
    19. Xiaoqiang Cai & George L. Vairaktarakis, 2012. "Coordination of Outsourced Operations at a Third-Party Facility Subject to Booking, Overtime, and Tardiness Costs," Operations Research, INFORMS, vol. 60(6), pages 1436-1450, December.
    20. Quentin Louveaux & Laurence Wolsey, 2007. "Lifting, superadditivity, mixed integer rounding and single node flow sets revisited," Annals of Operations Research, Springer, vol. 153(1), pages 47-77, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:152:y:2004:i:3:p:758-769. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.