IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v144y2003i1p128-137.html
   My bibliography  Save this article

Dynamic rationing policies for product with incremental upgrading demands

Author

Listed:
  • You, Peng-Sheng

Abstract

No abstract is available for this item.

Suggested Citation

  • You, Peng-Sheng, 2003. "Dynamic rationing policies for product with incremental upgrading demands," European Journal of Operational Research, Elsevier, vol. 144(1), pages 128-137, January.
  • Handle: RePEc:eee:ejores:v:144:y:2003:i:1:p:128-137
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(01)00397-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tak C. Lee & Marvin Hersh, 1993. "A Model for Dynamic Airline Seat Inventory Control with Multiple Seat Bookings," Transportation Science, INFORMS, vol. 27(3), pages 252-265, August.
    2. Peng-Sheng You, 1999. "Dynamic Pricing in Airline Seat Management for Flights with Multiple Flight Legs," Transportation Science, INFORMS, vol. 33(2), pages 192-206, May.
    3. T C Botimer & P P Belobaba, 1999. "Airline pricing and fare product differentiation: A new theoretical framework," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(11), pages 1085-1097, November.
    4. Peter P. Belobaba, 1989. "OR Practice—Application of a Probabilistic Decision Model to Airline Seat Inventory Control," Operations Research, INFORMS, vol. 37(2), pages 183-197, April.
    5. Lawrence W. Robinson, 1995. "Optimal and Approximate Control Policies for Airline Booking with Sequential Nonmonotonic Fare Classes," Operations Research, INFORMS, vol. 43(2), pages 252-263, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Quan-Lin Li & Yi-Meng Li & Jing-Yu Ma & Heng-Li Liu, 2023. "A complete algebraic solution to the optimal dynamic rationing policy in the stock-rationing queue with two demand classes," Journal of Combinatorial Optimization, Springer, vol. 45(3), pages 1-54, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Syed Asif Raza & Rafi Ashrafi & Ali Akgunduz, 2020. "A bibliometric analysis of revenue management in airline industry," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 19(6), pages 436-465, December.
    2. Jeffrey I. McGill & Garrett J. van Ryzin, 1999. "Revenue Management: Research Overview and Prospects," Transportation Science, INFORMS, vol. 33(2), pages 233-256, May.
    3. You, Peng-Sheng, 2008. "An efficient computational approach for railway booking problems," European Journal of Operational Research, Elsevier, vol. 185(2), pages 811-824, March.
    4. Chatwin, Richard E., 2000. "Optimal dynamic pricing of perishable products with stochastic demand and a finite set of prices," European Journal of Operational Research, Elsevier, vol. 125(1), pages 149-174, August.
    5. Yingjie Lan & Huina Gao & Michael O. Ball & Itir Karaesmen, 2008. "Revenue Management with Limited Demand Information," Management Science, INFORMS, vol. 54(9), pages 1594-1609, September.
    6. Pak, K. & Piersma, N., 2002. "airline revenue management," ERIM Report Series Research in Management ERS-2002-12-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    7. Pak, K. & Piersma, N., 2002. "Airline revenue management: an overview of OR techniques 1982-2001," Econometric Institute Research Papers EI 2002-03, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    8. Yigao Liang, 1999. "Solution to the Continuous Time Dynamic Yield Management Model," Transportation Science, INFORMS, vol. 33(1), pages 117-123, February.
    9. Kavitha Balaiyan & R. K. Amit & Atul Kumar Malik & Xiaodong Luo & Amit Agarwal, 2019. "Joint forecasting for airline pricing and revenue management," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 18(6), pages 465-482, December.
    10. Youyi Feng & Baichun Xiao, 2001. "A Dynamic Airline Seat Inventory Control Model and Its Optimal Policy," Operations Research, INFORMS, vol. 49(6), pages 938-949, December.
    11. Conrad J. Lautenbacher & Shaler Stidham, 1999. "The Underlying Markov Decision Process in the Single-Leg Airline Yield-Management Problem," Transportation Science, INFORMS, vol. 33(2), pages 136-146, May.
    12. William L. Cooper, 2002. "Asymptotic Behavior of an Allocation Policy for Revenue Management," Operations Research, INFORMS, vol. 50(4), pages 720-727, August.
    13. Dimitris Bertsimas & Sanne de Boer, 2005. "Simulation-Based Booking Limits for Airline Revenue Management," Operations Research, INFORMS, vol. 53(1), pages 90-106, February.
    14. Feng, Youyi & Xiao, Baichun, 2006. "A continuous-time seat control model for single-leg flights with no-shows and optimal overbooking upper bound," European Journal of Operational Research, Elsevier, vol. 174(2), pages 1298-1316, October.
    15. You, Peng-Sheng, 2001. "Airline seat management with rejection-for-possible-upgrade decision," Transportation Research Part B: Methodological, Elsevier, vol. 35(5), pages 507-524, June.
    16. Richard Van Slyke & Yi Young, 2000. "Finite Horizon Stochastic Knapsacks with Applications to Yield Management," Operations Research, INFORMS, vol. 48(1), pages 155-172, February.
    17. c{S}. .Ilker Birbil & J. B. G. Frenk & Joaquim A. S. Gromicho & Shuzhong Zhang, 2009. "The Role of Robust Optimization in Single-Leg Airline Revenue Management," Management Science, INFORMS, vol. 55(1), pages 148-163, January.
    18. Anton J. Kleywegt & Jason D. Papastavrou, 1998. "The Dynamic and Stochastic Knapsack Problem," Operations Research, INFORMS, vol. 46(1), pages 17-35, February.
    19. Kyle Y. Lin, 2004. "A sequential dynamic pricing model and its applications," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(4), pages 501-521, June.
    20. Wang, Weidi & Tang, Ou & Huo, Jiazhen, 2018. "Dynamic capacity allocation for airlines with multi-channel distribution," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 173-181.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:144:y:2003:i:1:p:128-137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.