IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v486y2023ics0304380023002466.html
   My bibliography  Save this article

Parameter-varying partial differential equation to model the global change impacts on wildlife populations

Author

Listed:
  • Chhaytle, Mohamad
  • Ouvrard, Régis
  • Poinot, Thierry
  • Mouysset, Lauriane

Abstract

Accurate models of wildlife population dynamics are needed to assess the causes of global biodiversity decline. In this paper, new parameter-varying PDE models are proposed with an original methodology for parametric estimation from ecological data. The model structure makes it possible to introduce the environmental heterogeneity which can characterize global changes. Particular attention was paid to the implementation of the identification procedure: true parametric sensitivity functions in the optimization algorithm, a Galerkin method with a proper orthogonal decomposition for the PDE solution and a pre-estimate to initialize the iterative procedure. The tools are validated on simulation data and then applied to a real application modelling the impact of climate change and agricultural intensification on the population of a passerine bird.

Suggested Citation

  • Chhaytle, Mohamad & Ouvrard, Régis & Poinot, Thierry & Mouysset, Lauriane, 2023. "Parameter-varying partial differential equation to model the global change impacts on wildlife populations," Ecological Modelling, Elsevier, vol. 486(C).
  • Handle: RePEc:eee:ecomod:v:486:y:2023:i:c:s0304380023002466
    DOI: 10.1016/j.ecolmodel.2023.110516
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380023002466
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2023.110516?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mouysset, L. & Rais Assa, C. & Ay, J-S. & Jiguet, F. & Lorrilière, R. & Doyen, L., 2019. "Bioeconomic impacts of agroforestry policies in France," Land Use Policy, Elsevier, vol. 85(C), pages 239-248.
    2. Tiphaine Guillet & Lauriane Mouysset, 2022. "Productive versus environmental objectives of agricultural policies dealing with climate change: a French case study," Post-Print hal-03919917, HAL.
    3. Melo-Merino, Sara M. & Reyes-Bonilla, Héctor & Lira-Noriega, Andrés, 2020. "Ecological niche models and species distribution models in marine environments: A literature review and spatial analysis of evidence," Ecological Modelling, Elsevier, vol. 415(C).
    4. Mouysset, L., 2014. "Agricultural public policy: Green or sustainable?," Ecological Economics, Elsevier, vol. 102(C), pages 15-23.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Louhichi, Kamel & Ciaian, Pavel & Espinosa, Maria & Colen, Liesbeth & Perni, Angel & Paloma, Sergio, 2015. "The Impact of Crop Diversification Measure: EU-wide Evidence Based on IFM-CAP Model," 2015 Conference, August 9-14, 2015, Milan, Italy 211542, International Association of Agricultural Economists.
    2. Louhichi, Kamel & Ciaian, Pavel & Espinosa, Maria & Colen, Liesbeth & Perni, Angel & Gomez y Paloma, Sergio, 2015. "EU-wide individual Farm Model for CAP Analysis (IFM-CAP): Application to Crop Diversification Policy," 2015 Conference, August 9-14, 2015, Milan, Italy 212155, International Association of Agricultural Economists.
    3. Koffi M. Adji & Aklesso Y. G. Egbendewe & Boris O. K. Lokonon, 2022. "Potential impacts of sustainable agricultural practices on smallholders' behavior in developing countries: Evidence from Togo," Natural Resources Forum, Blackwell Publishing, vol. 46(1), pages 73-87, February.
    4. Vincent Bian & Merrick Cai & Christopher L. Follett, 2023. "Understanding opposing predictions of Prochlorococcus in a changing climate," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Rodrigues, Lucas dos Santos & Daudt, Nicholas Winterle & Cardoso, Luis Gustavo & Kinas, Paul Gerhard & Conesa, David & Pennino, Maria Grazia, 2023. "Species distribution modelling in the Southwestern Atlantic Ocean: A systematic review and trends," Ecological Modelling, Elsevier, vol. 486(C).
    6. Markova-Nenova, Nonka & Wätzold, Frank & Sturm, Astrid, 2020. "Distributional Impacts of Cost-effective Spatially Homogeneous and Regionalized Agri-Environment Payments. A case study of a Grassland Scheme in Saxony, Germany," MPRA Paper 104759, University Library of Munich, Germany.
    7. Varos Petrosyan & Fedor Osipov & Vladimir Bobrov & Natalia Dergunova & Andrey Omelchenko & Alexander Varshavskiy & Felix Danielyan & Marine Arakelyan, 2020. "Species Distribution Models and Niche Partitioning among Unisexual Darevskia dahli and Its Parental Bisexual ( D. portschinskii , D. mixta ) Rock Lizards in the Caucasus," Mathematics, MDPI, vol. 8(8), pages 1-21, August.
    8. Curtis Champion & James R. Lawson & Joanna Pardoe & Derrick O. Cruz & Ashley M. Fowler & Fabrice Jaine & Hayden T. Schilling & Melinda A. Coleman, 2023. "Multi-criteria analysis for rapid vulnerability assessment of marine species to climate change," Climatic Change, Springer, vol. 176(8), pages 1-20, August.
    9. Donfouet, Hermann Pythagore Pierre & Barczak, Aleksandra & Détang-Dessendre, Cécile & Maigné, Elise, 2017. "Crop Production and Crop Diversity in France: A Spatial Analysis," Ecological Economics, Elsevier, vol. 134(C), pages 29-39.
    10. Yan Yu & Ya Wu & Pan Wang & Yili Zhang & Liang Emlyn Yang & Xian Cheng & Jianzhong Yan, 2021. "Grassland Subsidies Increase the Number of Livestock on the Tibetan Plateau: Why Does the “Payment for Ecosystem Services” Policy Have the Opposite Outcome?," Sustainability, MDPI, vol. 13(11), pages 1-20, May.
    11. Marianna V. P. Simões & Hanieh Saeedi & Marlon E. Cobos & Angelika Brandt, 2021. "Environmental matching reveals non-uniform range-shift patterns in benthic marine Crustacea," Climatic Change, Springer, vol. 168(3), pages 1-20, October.
    12. Obermeier, Tim, 2022. "Individual Welfare Analysis: What's the Role of Intra-Family Preference Heterogeneity?," VfS Annual Conference 2022 (Basel): Big Data in Economics 264101, Verein für Socialpolitik / German Economic Association.
    13. Mouysset, L. & Rais Assa, C. & Ay, J-S. & Jiguet, F. & Lorrilière, R. & Doyen, L., 2019. "Bioeconomic impacts of agroforestry policies in France," Land Use Policy, Elsevier, vol. 85(C), pages 239-248.
    14. Azuaje-Rodríguez, Roxiris A. & Silva, Sofia Marques & Carlos, Caio J., 2022. "Not going with the flow: Ecological niche of a migratory seabird, the South American Tern Sterna hirundinacea," Ecological Modelling, Elsevier, vol. 463(C).
    15. Arbolino, Roberta & Boffardi, Raffaele & Lanuzza, Francesco & Ioppolo, Giuseppe, 2018. "Monitoring and evaluation of regional industrial sustainability: Evidence from Italian regions," Land Use Policy, Elsevier, vol. 75(C), pages 420-428.
    16. Yanis Elalamy & Luc Doyen & Lauriane Mouysset, 2019. "Contribution of the land use allocation model for agroecosystems: The case of Torrecchia Vecchia," Post-Print hal-03143304, HAL.
    17. Rastislav Kotulic & Mariana Dubravská, 2015. "Impact Of Management Tendencies Of The Common Agricultural Policy On The European Union Budget," Polish Journal of Management Studies, Czestochowa Technical University, Department of Management, vol. 11(2), pages 62-70, June.
    18. Alda Miftari, 2019. "Sustainability of water use in agriculture. Southern European farmers participation and social impact," Academicus International Scientific Journal, Entrepreneurship Training Center Albania, issue 19, pages 131-145, March.
    19. Muhammad Abdul Hakim Muhamad & Rozaimi Che Hasan & Najhan Md Said & Jillian Lean-Sim Ooi, 2021. "Seagrass habitat suitability model for Redang Marine Park using multibeam echosounder data: Testing different spatial resolutions and analysis window sizes," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-26, September.
    20. Barber-O'Malley, Betsy & Lassalle, Géraldine & Chust, Guillem & Diaz, Estibaliz & O'Malley, Andrew & Paradinas Blázquez, César & Pórtoles Marquina, Javier & Lambert, Patrick, 2022. "HyDiaD: A hybrid species distribution model combining dispersal, multi-habitat suitability, and population dynamics for diadromous species under climate change scenarios," Ecological Modelling, Elsevier, vol. 470(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:486:y:2023:i:c:s0304380023002466. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.